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The asymmetric simple exclusion process(ASEP)

has become a paradigm in nonequilibrium physics

due to its simplicity, rich behaviour and wide

range of applicability.

It is an exacltly solvable model of an open many-

particle stochastic system interacting with hard

core exclusion.

Introduced originally as a simplified model of one

dimensional transport for phenomena like

hopping conductivity and kinetics of biopolimer-

ization,

it has found applications from traffic flow, to in-

terface growth, shock formation, hydrodynamic

systems obeying the noisy Burger equation, prob-

lems of sequence alignment in biology.



At large time the ASEP exibits relaxation

to a steady state,

and even after the relaxation it has

a nonvanishing current.

An intriguing feature is the occurrence of

boundary induced phase transitions

and the fact that

the stationary bulk properties depend strongly

on the boundary rates.



The ASEP is a stochastic process described in

terms of a master equation for the probabil-

ity distribution P(si, t) of a stochastic variable

si = 0,1,2...., n − 1 at a site i = 1,2, ....L of a

linear chain. A state on the lattice at a time t is

determined by the occupation numbers si and a

transition to another configuration s′i during an

infinitesimal time step dt is given by the proba-

bility Γ(s, s′)dt. The rates Γ ≡ Γik
jl are assumed

to be independent from the position in the bulk.

At the boundaries, i.e. sites 1 and L additional

processes can take place with rates L and R.

Due to probability conservation

Γ(s, s) = −
∑

s′ 6=s

Γ(s′, s) (1)

DIFFUSION - Γik
ki = gik

Processes with exclusion - a site can be either

empty or occupied by a particle of a given type.

In the set of occupation numbers (s1, s2, ..., sL)

specifying a configuration of the system



si = 0 if a site i is empty,

si = 1 if there is a first-type particle at a site

i,...,

si = n − 1 if there is an (n − 1)th-type particle

at a site i.

- gikdt - i, k = 0,1,2, ..., n − 1 - with i < k,

gik are the probability rates of hopping to the

left,

gki - to the right.

The event of exchange happens if out of two

adjacent sites one is a vacancy and the other

is occupied by a particle, or each of the sites is

occupied by a particle of a different type.

The n-species SYMMETRIC simple exclusion

process - lattice gas model of particle hopping

with a constant rate gik = gki = g.



The n-species ASYMMETRIC simple exclusion

process with hopping in a preferred direction is

the driven diffusive lattice gas.

The process is totally asymmetric if all jumps

occur in one direction only, and partially asym-

metric if there is a different non-zero probability

of both left and right hopping.

-The number of particles in the bulk is conserved

and this is the case of periodic boundary condi-

tions.

-In the case of open systems, the lattice gas

is coupled to external reservoirs of particles of

fixed density and additional processes can take

place at the boundaries.



The master equation for the time evolution of a

stochastic system

dP(s, t)

dt
=
∑

s′
Γ(s, s′)P(s′, t) (2)

is mapped to a Schroedinger equation for a

quantum Hamiltonian in imaginary time

dP(t)

dt
= −HP(t) (3)

where

H =
∑

j

Hj,j+1 + H(L) + B(R) (4)

The ground state of this in general non-hermitean

Hamiltonian corresponds to the stationary prob-

ability distribution of the stochastic dynamics.

The mapping provides a connection with inte-

grable quantum spin chains.

Example: A relation to the integrable spin 1/2

XXZ quantum spin chain Hamiltonian HXXZ with

anisotropy ∆ = (q+q−1)
2 and most general non

diagonal boundary terms HL and HR through

the similarity transformation Γ = −qU−1
µ HXXZUµ



MATRIX PRODUCT STATES APPROACH

The stationary probability distribution, i.e. the

ground state of the quantum Hamiltonian is ex-

pressed as a product of (or a trace over) matri-

ces that form representation of a quadratic alge-

bra determined by the dynamics of the process.

(Derrida et al. - ASEP with open boundaries; 3-

species diffusion-type, reaction-diffusion processes)

ANZATZ

Any zero energy eigenstate of a Hamiltonian

with nearest neighbour interaction in the bulk

and single site boundary terms can be written

as a matrix product state with respect to a

quadratic algebra

Γik
jlDiDk = xlDj − xjDl

DIFFUSION - Γik
ki = gik



DIFFUSION ALGEBRA

gikDiDk − gkiDkDi = xkDi − xiDk (5)

where i, k = 0,1, ...n − 1 and xi satisfy

n−1
∑

i=0

xi = 0

This is an algebra with INVOLUTION, hence

hermitean Di

Di = D+
i , g+

ik = gki xi = −x+
i (6)

(or Di = −D+
i , if gik = g+

ki).

PROBABILITY DISTRIBUTION:

- periodic boundary conditions

P(s1, ....sL) = Tr(Ds1Ds2...DsL) (7)

-open systems with boundary processes

P(s1, ....sL) =< w|Ds1Ds2...DsL|v > (8)

the vectors |v > and < w| are defined by

< w|(Lk
i Dk + xi) = 0, (Rk

i Dk − xi)|v >= 0

(9)



where at site 1 (left) and at site L (right) the

particle i is replaced by the particle k with prob-

abilities Li
kdt and Ri

kdt respectively.

Li
i = −

L−1
∑

j=0

Li
j, Ri

i = −
L−1
∑

j=0

Ri
j (10)

THUS to find the stationary probability dis-

tribution one has to compute traces or matrix

elements with respect to the vectors |v > and

< w| of monomials of the form

D
m1
s1 D

m2
s2 .....D

mL
sL (11)

The problem to be solved is twofold - Find a

representation of the matrices D that is a so-

lution of the quadratic algebra and match the

algebraic solution with the boundary conditions.



The advantage of the matrix product state method

is that important physical properties and quan-

tities

like multiparticle correlaton functions, currents,

density profiles, phase diagrams can be obtained

once the representations of the matrix quadratic

algebra

and the boundary vectors are known.



EXACT SOLVABILITY of the ASYMMETRIC

EXCLUSION MODEL

OPEN DIFFUSION SYSTEM COUPLED at the

BOUNDARIES to EXTERNAL RESERVOIRS

- configuration set s1, s2, ..., sL where si = 0 if a

site i = 1,2, ..., L is empty and si = 1 if a site i

is occupied by a particle

- particles hop with a bulk probability g01dt to

the left and with a probability g10dt to the right

- at the left boundary a particle can be added

with probability αdt and removed with probabil-

ity γdt

- at the right boundary it can be removed with

probability βdt and added with probability δdt



right probability rate g01 = q

left probability rate g10 = 1

- quadratic algebra D1D0−qD0D1 = x1D0−x0D1

- boundary conditions: (x0 = −x1 = 1)

(βD1 − δD0)|v〉 = |v〉 (12)

〈w|(αD0 − γD1) = 〈w|.

For a given configuration (s1, s2, ..., sL)

the stationary probability is given by

P(s) =
〈w|Ds1Ds2...DsL|v〉

ZL
, (13)

Dsi = D1 if a site i = 1,2, ..., L is occupied

Dsi = D0 if a site i is empty and



ZL = 〈w|(D0 + D1)
L|v〉

is the normalization factor to the stationary prob-

ability distribution.

Within the matrix-product ansatz, one can eval-

uate physical quantities such as:

- the mean density 〈si〉 at a site i

〈si〉 =
〈w|(D0 + D1)

i−1D1(D0 + D1)
L−i|v〉

ZL

- the current J through a bond between

site i and site i + 1,

J = 〈si(1 − si+1) − q(1 − si)si+1〉

=
〈w|(D0 + D1)

i−1(D1D0 − qD0D1)(D0 + D1)
L−i−1|v〉

ZL



hence

J =
ZL−1

ZL

- the two-point correlation function 〈sisj〉

〈w|(D0 + D1)
i−1D1(D0 + D1)

j−i−1D1(D0 + D1)
L−j|v〉

ZL

- higher correlation functions.



BOUNDARY ASKEY - WILSON ALGEBRA

of the ASYMMETRIC EXCLUSION PROCESS

with incoming and outgoing particles at the left

and right boundaries

4 boundary parameters α, β, γ, δ

and bulk parameter 0 < q < 1

Hence 2 algebraic relations for the

operators αD0, βD1, γD1, δD0

βD1αD0 − qαD0βD1 = x1βαD0 − αβD1x0 (14)

γD1δD0 − qδD0γD1 = x1γδD0 − δγD1x0 (15)

or instead (for the second relation)

δD0γD1− q−1γD1δD0 = q−1x0δγD1− q−1γδD0x1

(16)



To form two linearly independant boundary op-

erators

BR = βD1 − δD0, BL = −γD1 + αD0

we use the Uq(sl(2)) algebra in the form of a de-

formed (u, v) algebra ( to include all applications

of the MPA quadratic algebra )

Special cases:

Uq(su(2)) ((u,−u), u < 0), a particular q-oscilator

algebra cuq(2) ((u, u), u > 0) and two isomorphic

ones eu±
q (2) (uv = 0).

Defining commutation relations:

[N, A±] = ±A± [A−, A+] = uqN + vq−N

(17)

Central element

Q = A+A− +
vqN − uq1−N

1 − q
(18)



Representations in a basis |n, κ〉

a positive discrete series D+
κ defined by

N |n, κ〉 = (κ + n)|n, κ〉, A−|n, κ〉 = rn|n − 1, κ〉,
A+|n, κ〉 = rn+1|n + 1, κ〉,

r2n =
(1 − qn)(vqκ + uq1−n−κ)

1 − q

|0, κ〉 is the vacuum with r0 = 0.

The representation is infinite-dimensional if for

all n

vqκ + uq1−n−κ > 0

fulfilled for Uq(sl2) (κ > 0),

and finite-dimensional of dimension l + 1 in the

Uq(su2) case, if for some n = l

−uqκ + uq−l−κ = 0 (19)



REPRESENTATION of the BOUNDARY OP-

ERATORS

βD1 − δD0 =

− x1β√
1 − q

qN/2A+ − x0δ√
1 − q

A−qN/2

−x1βq1/2 + x0δ

1 − q
qN − x1β + x0δ

1 − q

αD0 − γD1 =
x0α√
1 − q

q−N/2A+ +
x1γ√
1 − q

A−q−N/2

+
x0αq−1/2 + x1γ

1 − q
q−N +

x0α + x1γ

1 − q
(20)

SEPARATE the SHIFT PARTS and DENOTE

the REST by A and A∗

βD1 − δD0 = A − x1β + x0δ

1 − q
(21)

αD0 − γD1 = A∗ +
x0α + x1γ

1 − q



HENCE the OPERATORS A and A∗

A = βD1 − δD0 +
x1β + x0δ

1 − q
(22)

A∗ = αD0 − γD1 − x0α + x1γ

1 − q

and their [q-COMMUTATOR]

[A, A∗]q = q1/2AA∗ − q−1/2A∗A (23)

form a closed linear algebra - the ASKEY-WILSON

ALGEBRA

[[A, A∗]q, A]q = −ρA∗ − ωA − η (24)

[A∗, [A, A∗]q]q = −ρ∗A − ωA∗ − η∗

with REPRESENTATION-DEPENDENT STRUC-

TURE CONSTANTS



−ρ = x0x1βδq−1(q1/2 + q−1/2)2, (25)

−ρ∗ = x0x1αγq−1(q1/2 + q−1/2)2

−ω = (x1β + x0δ)(x1γ + x0α) (26)

− (x2
1βγ + x2

0αδ)(q1/2 − q−1/2)Q

η = q1/2(q1/2 + q−1/2)×
(

x0x1βδ(x1γ + x0α)Q − (x1β + x0δ)(x2
1βγ + x2

0αδ)

q1/2 − q−1/2

)

η∗ = q1/2(q1/2 + q−1/2)×
(

x0x1αγ(x1β + x0δ)Q +
(x0α + x1γ)(x2

0αδ + x2
1βγ)

q1/2 − q−1/2

)

AW algebra first considered by A. Zhedanov, re-

cently discussed in a more general framework of

a tridiagonal algebra (Terwilliger)



associative algebra (with a unit) generated by a

tridiagonal pair of operators A, A∗ and defining

relations

[A, [A[A, A∗]q]q−1 − γ(AA∗ + A∗A)] = ρ[A, A∗]
(27)

[A∗, [A∗[A∗, A]q]q−1 − γ∗(AA∗ + A∗A) = ρ∗[A∗, A]

(28)

In the general case a tridiagonal pair is deter-

mined by the sequence of scalars β, γ, γ∗, ρ, ρ∗

from a field K. Tridiagonal pairs have been

classified according to the dependence on the

scalars.

Affine transformations act on tridiagonal pairs

A → tA + c, A∗ → t∗A∗ + c∗ (29)

with t, t∗, c, c∗ some scalars

can be used to bring a tridiagonal pair in a re-

duced form with γ = γ∗ = 0.



Important Examples:

the q-Serre relations

β = q + q−1 γ = γ∗ = ρ = ρ∗ = 0

[A, A2A∗ − (q + q−1)AA∗A + A∗A2] = 0 (30)

[A∗, A∗2A − (q + q−1)A∗AA∗ + AA∗2] = 0

the Dolan-Grady relations with

β = 2, γ = γ∗ = 0, ρ = k2, ρ∗ = k∗2

[A, [A, [A, A∗]]] = k2[A, A∗] (31)

[A∗, [A∗, [A∗, A]]] = k∗2[A∗, A]



The AW algebra possesses important properties

that allow to obtain its ladder representations,

spectra, overlap functions.

Namely, there exists a basis (of orthogonal poly-

nomials) fr

according to which the operator A is diagonal

and the operator A∗ is tridiagonal.

There exists a dual basis fp in which the operator

A∗ is diagonal and the operator A is tridiagonal.

The overlap function of the two basis 〈s|r〉 =

〈f∗
s |fr〉 is expressed in terms of the Askey-Wilson

polynomials.

Relation of the BOUNDARY ALGEBRA to the

BASIC REPRESENTATION of the AW ALGE-

BRA



1.Divide the boundary eqs. by β and α,

BR = βD1 − δD0 → D1 − δ

β
D0 (32)

BL = −γD1 + αD0 → D0 − γ

α
D1

2.Hence a new sequence of scalars for the TD

pair

ρ/β, ρ∗/α, ω/αβ, η/αβ, η∗/αβ

3.Set x0 = −x1 = s where s is a free parameter

from x0 + x1 = 0.

4.Rescale the generators A ≡ 1
βA and A∗ ≡ 1

αA∗

A → (q−1/2 − q1/2)
1

q−1/2s
√

bd
A (33)

A∗ → (q−1/2 − q1/2)

√
bd

s
A∗



The tridiagonal relations for the transformed op-

erators read

[A, [A[A, A∗]q]q−1 = −(q − q−1)2[A, A∗] (34)

[A∗, [A ∗ [A∗, A]q]q−1 = −abcdq−1q − q−1)2[A∗, A]

where abcd = γ
α

δ
β.

Let pn = pn(x; a, b, c, d) denote the nth Askey-

Wilson polynomial depending on four parame-

ters a, b, c, d

pn =4 Φ3

(

q−n, abcdqn−1, ay, ay−1

ab, ac, ad
|q; q

)

(35)

with p0 = 1, x = y + y−1 and 0 < q < 1.

The basic representation π is in the space of

symmetric Laurent polynomials f [y] with a basis

(p0, p1, ...)

Af [y] = (y + y−1)f [y], A∗f [y] = Df [y] (36)

where D is the second order q-difference opera-

tor having the Askey-Wilson polynomials pn as



eigenfunctions, namely a linear transformation

given by

Df [y] = (1 + abcdq−1)f [y]

+
(1 − ay)(1 − by)(1 − cy)(1 − dy)

(1 − y2)(1 − qy2)
(f [qy] − f [y])

+
(a − y)(b − y)(c − y)(d − y)

(1 − y2)(q − y2)
(f [q−1y] − f [y])

with D(1) = 1 + abcdq−1. The eigenvalue equa-

tion for the joint eigenfunctions pn reads

Dpn = λ∗
npn, λ∗

n = q−n + abcdqn−1 (37)

and the operator A∗ is represented by an infinite-

dimensional matrix diag(λ∗
0, λ∗

1, λ∗
2, ...). The op-

erator Apn = xpn is represented by a tridiagonal

matrix

A =











a0 c1
b0 a1 c2

b1 a2 ·
· ·











(38)



whose matrix elements are obtained from the

three term recurrence relation for the Askey-

Wilson polynomials

xpn = bnpn+1 + anpn + cnpn−1, p−1 = 0

(39)

The explicit form of the matrix elements of A

reads

an = a + a−1 − bn − cn (40)

bn =
(1 − abqn)(1 − acqn)(1 − adqn)(1 − abcdqn−1)

a(1 − abcdq2n−1)(1 − abcdq2n)
(41)

cn =
a(1 − qn)(1 − bcqn−1)(1 − bdqn−1)(1 − cdqn−1)

(1 − abcdq2n−2)(1 − abcdq2n−1)
(42)



The basis is orthogonal with the orthogonality

condition for the Askey-Wilson polynomials

Pn(x; a, b, c, d|q) = a−n(ab, ac, ad; q)npn

1
∫

−1

w(x)

2π
√

1 − x2
PmPndx = hnδmn (43)

where w(x) = h(x,1)h(x,−1)h(x,q1/2)h(x,−q1/2)
h(x,a)h(x,b)h(x,c)h(x,d)

,

h(x, µ) =
∏∞

k=0[1 − 2µxqk + µ2q2k],

and

hn =
(abcdqn−1; q)n(abcdq2n; q)∞

(qn+1, abqn, acqn, adqn, bcqn, bdqn, cdqn; q)∞
(44)



Result: A representation π with basis (p0, p1, p2, ...)t

π(D1 − δ
βD0) is diagonal with eigenvalues

λn =
1

1 − q

(

bq−n + dqn−1
)

+
1

1 − q
(1 + bd) (45)

and π(D0 − γ
αD1) is tridiagonal

π(D0 − γ

α
D1) =

1

1 − q
bAt +

1

1 − q
(1 + ac) (46)

The dual representation π∗ has a basis p0, p1, p2, ...

with π∗(D0 − γ
αD1) diagonal with eigenvalues

λ∗
n =

1

1 − q

(

aq−n + cqn
)

+
1

1 − q
(1 + ac) (47)

and π∗(D1 − δ
βD0) tridiagonal

π∗(D1 − δ

β
D0) =

1

1 − q
aA +

1

1 − q
(1 + bd) (48)



The choice

〈w| = h
−1/2
0 (p0,0,0, ...), |v〉 = h

−1/2
0 (p0,0,0, ...)t

(h0 is a normalization)

as eigenvectors of the diagonal matrices

π(D1 − δ
βD0) and π∗(D0 − γ

αD1)

yields a solution to the boundary equations which

uniquely relate a, b, c, d to α, β, γ, δ.

Namely

a = κ∗
+(α, γ), b = κ+(β, δ),

c = κ∗
−(α, γ), d = κ−(β, δ)

where κ
(∗)
± (ν, τ) (≡ κ

(∗)
± ) is

κ
(∗)
± =

−(ν − τ − (1 − q)) ±
√

(ν − τ − (1 − q))2 + 4ντ

2ν
(49)



EACH BOUNDARY OPERATOR and the TRANS-

FER MATRIX D0 + D1

form an ISOMORPHIC TRIDIAGONAL PAIR

HENCE (D0 + D1)pn = (2 + x)pn

and using the orthogonality relation in the form

1 = h−1
0

∫

dyw(y + y−1)|p(y + y−1)〉〈p(y + y−1)|

one obtains (omitting the long technical datails)

A. a > 1, a > b B. b > 1, b > a

Za
L '

(

(1+a)(1+a−1)
1−q

)L
Zb

L '
(

(1+b)(1+b−1)
1−q

)L

J ' (1 − q) a
(1+a)2

J ' (1 − q) b
(1+b)2

and analogously, the correlation functions, the

density profile, etc.



CONCLUSION

BOUNDARY ASKEY-WILSON ALGEBRA OF

THE OPEN ASEP IS

THE LINEAR COVARIANCE ALGEBRA OF THE

BULK Uq(su(2)) SYMMETRY

AND ALLOWS FOR THE EXACT SOLVABIL-

ITY.


