Tridiagonal Algebra and Exact Solvability

Boyka Aneva
INRNE, Bulgarian Academy of Sciences

BW07
September 02-09, 2007, Kladovo, Serbia

Outline

1. Model Description
2. Matrix Product State Approach to Stochastic Dynamics
3. Bulk Symmetries
4. Open Systems with Boundary Processes
5. Boundary Askey-Wilson algebra and exact solvability

The asymmetric simple exclusion process(ASEP)
has become a paradigm in nonequilibrium physics due to its simplicity, rich behaviour and wide range of applicability.

It is an exacltly solvable model of an open manyparticle stochastic system interacting with hard core exclusion.

Introduced originally as a simplified model of one dimensional transport for phenomena like
hopping conductivity and kinetics of biopolimerization,
it has found applications from traffic flow, to interface growth, shock formation, hydrodynamic systems obeying the noisy Burger equation, problems of sequence alignment in biology.

At large time the ASEP exibits relaxation
to a steady state,
and even after the relaxation it has
a nonvanishing current.

An intriguing feature is the occurrence of
boundary induced phase transitions
and the fact that
the stationary bulk properties depend strongly
on the boundary rates.

The ASEP is a stochastic process described in terms of a master equation for the probability distribution $P\left(s_{i}, t\right)$ of a stochastic variable $s_{i}=0,1,2 \ldots, n-1$ at a site $i=1,2, \ldots . L$ of a linear chain. A state on the lattice at a time t is determined by the occupation numbers s_{i} and a transition to another configuration s_{i}^{\prime} during an infinitesimal time step $d t$ is given by the probability $\Gamma\left(s, s^{\prime}\right) d t$. The rates $\Gamma \equiv \Gamma_{j l}^{i k}$ are assumed to be independent from the position in the bulk. At the boundaries, i.e. sites 1 and L additional processes can take place with rates L and R. Due to probability conservation

$$
\begin{equation*}
\Gamma(s, s)=-\sum_{s^{\prime} \neq s} \Gamma\left(s^{\prime}, s\right) \tag{1}
\end{equation*}
$$

DIFFUSION $-\Gamma_{k i}^{i k}=g_{i k}$

Processes with exclusion - a site can be either empty or occupied by a particle of a given type.

In the set of occupation numbers ($s_{1}, s_{2}, \ldots, s_{L}$) specifying a configuration of the system
$s_{i}=0$ if a site i is empty,
$s_{i}=1$ if there is a first-type particle at a site i, \ldots,
$s_{i}=n-1$ if there is an ($n-1$)th-type particle at a site i.

- $g_{i k} d t-i, k=0,1,2, \ldots, n-1-$ with $i<k$,
$g_{i k}$ are the probability rates of hopping to the left,

$$
g_{k i}-\text { to the right. }
$$

The event of exchange happens if out of two adjacent sites one is a vacancy and the other is occupied by a particle, or each of the sites is occupied by a particle of a different type.

The n-species SYMMETRIC simple exclusion process - lattice gas model of particle hopping with a constant rate $g_{i k}=g_{k i}=g$.

The n-species ASYMMETRIC simple exclusion process with hopping in a preferred direction is the driven diffusive lattice gas.

The process is totally asymmetric if all jumps occur in one direction only, and partially asymmetric if there is a different non-zero probability of both left and right hopping.
-The number of particles in the bulk is conserved and this is the case of periodic boundary conditions.
-In the case of open systems, the lattice gas is coupled to external reservoirs of particles of fixed density and additional processes can take place at the boundaries.

The master equation for the time evolution of a stochastic system

$$
\begin{equation*}
\frac{d P(s, t)}{d t}=\sum_{s^{\prime}} \Gamma\left(s, s^{\prime}\right) P\left(s^{\prime}, t\right) \tag{2}
\end{equation*}
$$

is mapped to a Schroedinger equation for a quantum Hamiltonian in imaginary time

$$
\begin{equation*}
\frac{d P(t)}{d t}=-H P(t) \tag{3}
\end{equation*}
$$

where

$$
\begin{equation*}
H=\sum_{j} H_{j, j+1}+H^{(L)}+B^{(R)} \tag{4}
\end{equation*}
$$

The ground state of this in general non-hermitean Hamiltonian corresponds to the stationary probability distribution of the stochastic dynamics.
The mapping provides a connection with integrable quantum spin chains.
Example: A relation to the integrable spin $1 / 2$ XXZ quantum spin chain Hamiltonian $H_{X X Z}$ with anisotropy $\Delta=\frac{\left(q+q^{-1}\right)}{2}$ and most general non diagonal boundary terms H^{L} and H^{R} through the similarity transformation $\Gamma=-q U_{\mu}^{-1} H_{X X Z} U_{\mu}$

MATRIX PRODUCT STATES APPROACH The stationary probability distribution, i.e. the ground state of the quantum Hamiltonian is expressed as a product of (or a trace over) matrices that form representation of a quadratic algebra determined by the dynamics of the process. (Derrida et al. - ASEP with open boundaries; 3species diffusion-type, reaction-diffusion processes)

ANZATZ

Any zero energy eigenstate of a Hamiltonian with nearest neighbour interaction in the bulk and single site boundary terms can be written as a matrix product state with respect to a quadratic algebra

$$
\Gamma_{j l}^{i k} D_{i} D_{k}=x_{l} D_{j}-x_{j} D_{l}
$$

DIFFUSION $-\Gamma_{k i}^{i k}=g_{i k}$

DIFFUSION ALGEBRA

$$
\begin{equation*}
g_{i k} D_{i} D_{k}-g_{k i} D_{k} D_{i}=x_{k} D_{i}-x_{i} D_{k} \tag{5}
\end{equation*}
$$

where $i, k=0,1, \ldots n-1$ and x_{i} satisfy

$$
\sum_{i=0}^{n-1} x_{i}=0
$$

This is an algebra with INVOLUTION, hence hermitean D_{i}

$$
\begin{equation*}
D_{i}=D_{i}^{+}, \quad g_{i k}^{+}=g_{k i} \quad x_{i}=-x_{i}^{+} \tag{6}
\end{equation*}
$$

(or $D_{i}=-D_{i}^{+}$, if $g_{i k}=g_{k i}^{+}$).

PROBABILITY DISTRIBUTION:

- periodic boundary conditions

$$
\begin{equation*}
P\left(s_{1}, \ldots . s_{L}\right)=\operatorname{Tr}\left(D_{s_{1}} D_{s_{2}} \ldots D_{s_{L}}\right) \tag{7}
\end{equation*}
$$

-open systems with boundary processes

$$
\begin{equation*}
P\left(s_{1}, \ldots . s_{L}\right)=<w\left|D_{s_{1}} D_{s_{2}} \ldots D_{s_{L}}\right| v> \tag{8}
\end{equation*}
$$

the vectors $\mid v>$ and $<w \mid$ are defined by

$$
<w\left|\left(L_{i}^{k} D_{k}+x_{i}\right)=0, \quad\left(R_{i}^{k} D_{k}-x_{i}\right)\right| v>=0
$$

where at site 1 (left) and at site L (right) the particle i is replaced by the particle k with probabilities $L_{k}^{i} d t$ and $R_{k}^{i} d t$ respectively.

$$
\begin{equation*}
L_{i}^{i}=-\sum_{j=0}^{L-1} L_{j}^{i}, \quad \quad R_{i}^{i}=-\sum_{j=0}^{L-1} R_{j}^{i} \tag{10}
\end{equation*}
$$

THUS to find the stationary probability distribution one has to compute traces or matrix elements with respect to the vectors $\mid v>$ and $<w \mid$ of monomials of the form

$$
\begin{equation*}
D_{s_{1}}^{m_{1}} D_{s_{2}}^{m_{2}} \ldots . . D_{s_{L}}^{m_{L}} \tag{11}
\end{equation*}
$$

The problem to be solved is twofold - Find a representation of the matrices D that is a soIution of the quadratic algebra and match the algebraic solution with the boundary conditions.

The advantage of the matrix product state method
is that important physical properties and quantities
like multiparticle correlaton functions, currents, density profiles, phase diagrams can be obtained once the representations of the matrix quadratic algebra
and the boundary vectors are known.

EXACT SOLVABILITY of the ASYMMETRIC EXCLUSION MODEL
OPEN DIFFUSION SYSTEM COUPLED at the BOUNDARIES to EXTERNAL RESERVOIRS

- configuration set $s_{1}, s_{2}, \ldots, s_{L}$ where $s_{i}=0$ if a site $i=1,2, \ldots, L$ is empty and $s_{i}=1$ if a site i is occupied by a particle
- particles hop with a bulk probability $g_{01} d t$ to the left and with a probability $g_{10} d t$ to the right
- at the left boundary a particle can be added with probability $\alpha d t$ and removed with probability $\gamma d t$
- at the right boundary it can be removed with probability $\beta d t$ and added with probability $\delta d t$
right probability rate $\quad g_{01}=q$
left probability rate $\quad g_{10}=1$
- quadratic algebra $D_{1} D_{0}-q D_{0} D_{1}=x_{1} D_{0}-x_{0} D_{1}$
- boundary conditions: $\left(x_{0}=-x_{1}=1\right)$

$$
\begin{align*}
\left(\beta D_{1}-\delta D_{0}\right)|v\rangle & =|v\rangle \tag{12}\\
\langle w|\left(\alpha D_{0}-\gamma D_{1}\right) & =\langle w|
\end{align*}
$$

For a given configuration $\left(s_{1}, s_{2}, \ldots, s_{L}\right)$ the stationary probability is given by

$$
\begin{equation*}
P(s)=\frac{\langle w| D_{s_{1}} D_{s_{2}} \ldots D_{s_{L}}|v\rangle}{Z_{L}} \tag{13}
\end{equation*}
$$

$D_{s_{i}}=D_{1}$ if a site $i=1,2, \ldots, L$ is occupied $D_{s_{i}}=D_{0}$ if a site i is empty and

$$
Z_{L}=\langle w|\left(D_{0}+D_{1}\right)^{L}|v\rangle
$$

is the normalization factor to the stationary probability distribution.

Within the matrix-product ansatz, one can evaluate physical quantities such as:

- the mean density $\left\langle s_{i}\right\rangle$ at a site i

$$
\left\langle s_{i}\right\rangle=\frac{\langle w|\left(D_{0}+D_{1}\right)^{i-1} D_{1}\left(D_{0}+D_{1}\right)^{L-i}|v\rangle}{Z_{L}}
$$

- the current J through a bond between site i and site $i+1$,

$$
J=\left\langle s_{i}\left(1-s_{i+1}\right)-q\left(1-s_{i}\right) s_{i+1}\right\rangle
$$

$=\frac{\langle w|\left(D_{0}+D_{1}\right)^{i-1}\left(D_{1} D_{0}-q D_{0} D_{1}\right)\left(D_{0}+D_{1}\right)^{L-i-1}|v\rangle}{Z_{L}}$
hence

$$
J=\frac{Z_{L-1}}{Z_{L}}
$$

- the two-point correlation function $\left\langle s_{i} s_{j}\right\rangle$
$\frac{\langle w|\left(D_{0}+D_{1}\right)^{i-1} D_{1}\left(D_{0}+D_{1}\right)^{j-i-1} D_{1}\left(D_{0}+D_{1}\right)^{L-j}|v\rangle}{Z_{L}}$
- higher correlation functions.

BOUNDARY ASKEY - WILSON ALGEBRA of the ASYMMETRIC EXCLUSION PROCESS with incoming and outgoing particles at the left and right boundaries

4 boundary parameters $\quad \alpha, \beta, \gamma, \delta$
and bulk parameter $0<q<1$

Hence 2 algebraic relations for the
operators $\alpha D_{0}, \beta D_{1}, \gamma D_{1}, \delta D_{0}$

$$
\begin{align*}
\beta D_{1} \alpha D_{0}-q \alpha D_{0} \beta D_{1} & =x_{1} \beta \alpha D_{0}-\alpha \beta D_{1} x_{0} \\
\gamma D_{1} \delta D_{0}-q \delta D_{0} \gamma D_{1} & =x_{1} \gamma \delta D_{0}-\delta \gamma D_{1} x_{0} \tag{15}
\end{align*}
$$

or instead (for the second relation)

$$
\delta D_{0} \gamma D_{1}-q^{-1} \gamma D_{1} \delta D_{0}=q^{-1} x_{0} \delta \gamma D_{1}-q^{-1} \gamma \delta D_{0} x_{1}
$$

To form two linearly independant boundary operators
$B^{R}=\beta D_{1}-\delta D_{0}, \quad B^{L}=-\gamma D_{1}+\alpha D_{0}$
we use the $U_{q}(s l(2))$ algebra in the form of a deformed (u, v) algebra (to include all applications of the MPA quadratic algebra)

Special cases:

$U_{q}(s u(2))((u,-u), u<0)$, a particular q-oscilator algebra $c u_{q}(2)((u, u), u>0)$ and two isomorphic ones $e u_{q}^{ \pm}(2)(u v=0)$.

Defining commutation relations:

$$
\begin{equation*}
\left[N, A_{ \pm}\right]= \pm A_{ \pm} \quad\left[A_{-}, A_{+}\right]=u q^{N}+v q^{-N} \tag{17}
\end{equation*}
$$

Central element

$$
\begin{equation*}
Q=A_{+} A_{-}+\frac{v q^{N}-u q^{1-N}}{1-q} \tag{18}
\end{equation*}
$$

Representations in a basis $|n, \kappa\rangle$
a positive discrete series D_{κ}^{+}defined by
$N|n, \kappa\rangle=(\kappa+n)|n, \kappa\rangle, A_{-}|n, \kappa\rangle=r_{n}|n-1, \kappa\rangle$, $A_{+}|n, \kappa\rangle=r_{n+1}|n+1, \kappa\rangle$,
$r_{n}^{2}=\frac{\left(1-q^{n}\right)\left(v q^{\kappa}+u q^{1-n-\kappa}\right)}{1-q}$
$|0, \kappa\rangle$ is the vacuum with $r_{0}=0$.
The representation is infinite-dimensional if for all n
$v q^{\kappa}+u q^{1-n-\kappa}>0$
fulfilled for $U_{q}\left(s l_{2}\right)(\kappa>0)$,
and finite-dimensional of dimension $l+1$ in the $U_{q}\left(s u_{2}\right)$ case, if for some $n=l$

$$
\begin{equation*}
-u q^{\kappa}+u q^{-l-\kappa}=0 \tag{19}
\end{equation*}
$$

REPRESENTATION of the BOUNDARY OPERATORS

$$
\left.\begin{array}{l}
\beta D_{1}-\delta D_{0}= \\
-\frac{x_{1} \beta}{\sqrt{1-q}} q^{N / 2} A_{+}-\frac{x_{0} \delta}{\sqrt{1-q}} A_{-} q^{N / 2} \\
-\frac{x_{1} \beta q^{1 / 2}+x_{0} \delta}{1-q} q^{N}-\frac{x_{1} \beta+x_{0} \delta}{1-q} \\
\alpha D_{0}-\gamma D_{1}= \\
\frac{x_{0} \alpha}{\sqrt{1-q}} q^{-N / 2} A_{+}+\frac{x_{1} \gamma}{\sqrt{1-q}} A_{-} q^{-N / 2} \\
+\frac{x_{0} \alpha q}{-1 / 2}+x_{1} \gamma \\
1-q
\end{array} q^{-N}+\frac{x_{0} \alpha+x_{1} \gamma}{1-q}(20)\right) .
$$

SEPARATE the SHIFT PARTS and DENOTE the REST by A and A^{*}

$$
\begin{align*}
\beta D_{1}-\delta D_{0} & =A-\frac{x_{1} \beta+x_{0} \delta}{1-q} \tag{21}\\
\alpha D_{0}-\gamma D_{1} & =A^{*}+\frac{x_{0} \alpha+x_{1} \gamma}{1-q}
\end{align*}
$$

HENCE the OPERATORS A and A^{*}

$$
\begin{align*}
A & =\beta D_{1}-\delta D_{0}+\frac{x_{1} \beta+x_{0} \delta}{1-q} \tag{22}\\
A^{*} & =\alpha D_{0}-\gamma D_{1}-\frac{x_{0} \alpha+x_{1} \gamma}{1-q}
\end{align*}
$$

and their [q-COMMUTATOR]

$$
\begin{equation*}
\left[A, A^{*}\right]_{q}=q^{1 / 2} A A^{*}-q^{-1 / 2} A^{*} A \tag{23}
\end{equation*}
$$

form a closed linear algebra - the ASKEY-WILSON ALGEBRA

$$
\begin{gather*}
{\left[\left[A, A^{*}\right]_{q}, A\right]_{q}=-\rho A^{*}-\omega A-\eta} \tag{24}\\
{\left[A^{*},\left[A, A^{*}\right]_{q}\right]_{q}=-\rho^{*} A-\omega A^{*}-\eta^{*}}
\end{gather*}
$$

with REPRESENTATION-DEPENDENT STRUCTURE CONSTANTS

$$
\begin{align*}
-\rho & =x_{0} x_{1} \beta \delta q^{-1}\left(q^{1 / 2}+q^{-1 / 2}\right)^{2} \tag{25}\\
-\rho^{*} & =x_{0} x_{1} \alpha \gamma q^{-1}\left(q^{1 / 2}+q^{-1 / 2}\right)^{2}
\end{align*}
$$

$$
\begin{equation*}
-\omega=\left(x_{1} \beta+x_{0} \delta\right)\left(x_{1} \gamma+x_{0} \alpha\right) \tag{26}
\end{equation*}
$$

$$
-\left(x_{1}^{2} \beta \gamma+x_{0}^{2} \alpha \delta\right)\left(q^{1 / 2}-q^{-1 / 2}\right) Q
$$

$$
\begin{aligned}
& \eta=q^{1 / 2}\left(q^{1 / 2}+q^{-1 / 2}\right) \times \\
& \left(x_{0} x_{1} \beta \delta\left(x_{1} \gamma+x_{0} \alpha\right) Q-\frac{\left(x_{1} \beta+x_{0} \delta\right)\left(x_{1}^{2} \beta \gamma+x_{0}^{2} \alpha \delta\right)}{q^{1 / 2}-q^{-1 / 2}}\right) \\
& \eta^{*}=q^{1 / 2}\left(q^{1 / 2}+q^{-1 / 2}\right) \times \\
& \left(x_{0} x_{1} \alpha \gamma\left(x_{1} \beta+x_{0} \delta\right) Q+\frac{\left(x_{0} \alpha+x_{1} \gamma\right)\left(x_{0}^{2} \alpha \delta+x_{1}^{2} \beta \gamma\right)}{q^{1 / 2}-q^{-1 / 2}}\right)
\end{aligned}
$$

AW algebra first considered by A. Zhedanov, recently discussed in a more general framework of a tridiagonal algebra (Terwilliger)
associative algebra (with a unit) generated by a tridiagonal pair of operators A, A^{*} and defining relations

$$
\begin{align*}
{\left[A,\left[A\left[A, A^{*}\right]_{q}\right]_{q^{-1}}-\gamma\left(A A^{*}+A^{*} A\right)\right] } & =\rho\left[A, A^{*}\right] \\
{\left[A^{*},\left[A^{*}\left[A^{*}, A\right]_{q}\right]_{q^{-1}}-\gamma^{*}\left(A A^{*}+A^{*} A\right)\right.} & =\rho^{*}\left[A^{*}, A\right]
\end{align*}
$$

In the general case a tridiagonal pair is determined by the sequence of scalars $\beta, \gamma, \gamma^{*}, \rho, \rho^{*}$ from a field K. Tridiagonal pairs have been classified according to the dependence on the scalars.

Affine transformations act on tridiagonal pairs

$$
\begin{equation*}
A \rightarrow t A+c, \quad A^{*} \rightarrow t^{*} A^{*}+c^{*} \tag{29}
\end{equation*}
$$

with t, t^{*}, c, c^{*} some scalars
can be used to bring a tridiagonal pair in a reduced form with $\gamma=\gamma^{*}=0$.

Important Examples:

the q-Serre relations
$\beta=q+q^{-1} \quad \gamma=\gamma^{*}=\rho=\rho^{*}=0$

$$
\begin{aligned}
{\left[A, A^{2} A^{*}-\left(q+q^{-1}\right) A A^{*} A+A^{*} A^{2}\right] } & =0 \\
{\left[A^{*}, A^{* 2} A-\left(q+q^{-1}\right) A^{*} A A^{*}+A A^{* 2}\right] } & =0
\end{aligned}
$$

the Dolan-Grady relations with

$$
\beta=2, \gamma=\gamma^{*}=0, \rho=k^{2}, \rho^{*}=k^{* 2}
$$

$$
\begin{array}{r}
{\left[A,\left[A,\left[A, A^{*}\right]\right]\right]=k^{2}\left[A, A^{*}\right]} \tag{31}\\
{\left[A^{*},\left[A^{*},\left[A^{*}, A\right]\right]\right]=k^{* 2}\left[A^{*}, A\right]}
\end{array}
$$

The AW algebra possesses important properties
that allow to obtain its ladder representations, spectra, overlap functions.

Namely, there exists a basis (of orthogonal polynomials) f_{r}
according to which the operator A is diagonal and the operator A^{*} is tridiagonal.

There exists a dual basis f_{p} in which the operator A^{*} is diagonal and the operator A is tridiagonal.

The overlap function of the two basis $\langle s \mid r\rangle=$ $\left\langle f_{s}^{*} \mid f_{r}\right\rangle$ is expressed in terms of the Askey-Wilson polynomials.

Relation of the BOUNDARY ALGEBRA to the BASIC REPRESENTATION of the AW ALGEBRA

1. Divide the boundary eqs. by β and α,

$$
\begin{align*}
B^{R} & =\beta D_{1}-\delta D_{0} \rightarrow D_{1}-\frac{\delta}{\beta} D_{0} \tag{32}\\
B^{L} & =-\gamma D_{1}+\alpha D_{0} \rightarrow D_{0}-\frac{\gamma}{\alpha} D_{1}
\end{align*}
$$

2.Hence a new sequence of scalars for the TD pair

$$
\rho / \beta, \quad \rho^{*} / \alpha, \quad \omega / \alpha \beta, \quad \eta / \alpha \beta, \quad \eta^{*} / \alpha \beta
$$

3.Set $x_{0}=-x_{1}=s$ where s is a free parameter from $x_{0}+x_{1}=0$.
4.Rescale the generators $A \equiv \frac{1}{\beta} A$ and $A^{*} \equiv \frac{1}{\alpha} A^{*}$

$$
\begin{align*}
A \rightarrow & \left(q^{-1 / 2}-q^{1 / 2}\right) \frac{1}{q^{-1 / 2} s \sqrt{b d}} A \tag{33}\\
& A^{*} \rightarrow\left(q^{-1 / 2}-q^{1 / 2}\right) \frac{\sqrt{b d}}{s} A^{*}
\end{align*}
$$

The tridiagonal relations for the transformed operators read

$$
\begin{equation*}
\left[A,\left[A\left[A, A^{*}\right]_{q}\right]_{q^{-1}}=-\left(q-q^{-1}\right)^{2}\left[A, A^{*}\right]\right. \tag{34}
\end{equation*}
$$

$\left[A *,\left[A *[A *, A]_{q}\right]_{q^{-1}}=-a b c d q^{-1} q-q^{-1}\right)^{2}[A *, A]$ where $a b c d=\frac{\gamma}{\alpha} \frac{\delta}{\beta}$.

Let $p_{n}=p_{n}(x ; a, b, c, d)$ denote the nth AskeyWilson polynomial depending on four parameters a, b, c, d

$$
p_{n}={ }_{4} \Phi_{3}\left(\left.\begin{array}{c}
q^{-n}, a b c d q^{n-1}, a y, a y^{-1} \tag{35}\\
a b, a c, a d
\end{array} \right\rvert\, q ; q\right)
$$

with $p_{0}=1, x=y+y^{-1}$ and $0<q<1$.
The basic representation π is in the space of symmetric Laurent polynomials $f[y]$ with a basis (p_{0}, p_{1}, \ldots)

$$
A f[y]=\left(y+y^{-1}\right) f[y], \quad A^{*} f[y]=\mathcal{D} f[y]
$$

where \mathcal{D} is the second order q-difference operator having the Askey-Wilson polynomials p_{n} as
eigenfunctions, namely a linear transformation given by

$$
\begin{aligned}
& \mathcal{D} f[y]=\left(1+a b c d q^{-1}\right) f[y] \\
& +\frac{(1-a y)(1-b y)(1-c y)(1-d y)}{\left(1-y^{2}\right)\left(1-q y^{2}\right)}(f[q y]-f[y]) \\
& +\frac{(a-y)(b-y)(c-y)(d-y)}{\left(1-y^{2}\right)\left(q-y^{2}\right)}\left(f\left[q^{-1} y\right]-f[y]\right)
\end{aligned}
$$

with $\mathcal{D}(1)=1+a b c d q^{-1}$. The eigenvalue equation for the joint eigenfunctions p_{n} reads

$$
\begin{equation*}
\mathcal{D} p_{n}=\lambda_{n}^{*} p_{n}, \quad \lambda_{n}^{*}=q^{-n}+a b c d q^{n-1} \tag{37}
\end{equation*}
$$

and the operator A^{*} is represented by an infinitedimensional matrix $\operatorname{diag}\left(\lambda_{0}^{*}, \lambda_{1}^{*}, \lambda_{2}^{*}, \ldots\right)$. The operator $A p_{n}=x p_{n}$ is represented by a tridiagonal matrix

$$
\mathcal{A}=\left(\begin{array}{cccc}
a_{0} & c_{1} & & \tag{38}\\
b_{0} & a_{1} & c_{2} & \\
& b_{1} & a_{2} & \cdot \\
& & \cdot & .
\end{array}\right)
$$

whose matrix elements are obtained from the three term recurrence relation for the AskeyWilson polynomials

$$
\begin{equation*}
x p_{n}=b_{n} p_{n+1}+a_{n} p_{n}+c_{n} p_{n-1}, \quad p_{-1}=0 \tag{39}
\end{equation*}
$$

The explicit form of the matrix elements of A reads

$$
\begin{equation*}
a_{n}=a+a^{-1}-b_{n}-c_{n} \tag{40}
\end{equation*}
$$

$$
\begin{equation*}
b_{n}=\frac{\left(1-a b q^{n}\right)\left(1-a c q^{n}\right)\left(1-a d q^{n}\right)\left(1-a b c d q^{n-1}\right)}{a\left(1-a b c d q^{2 n-1}\right)\left(1-a b c d q^{2 n}\right)} \tag{41}
\end{equation*}
$$

$$
c_{n}=\frac{a\left(1-q^{n}\right)\left(1-b c q^{n-1}\right)\left(1-b d q^{n-1}\right)\left(1-c d q^{n-1}\right)}{\left(1-a b c d q^{2 n-2}\right)\left(1-a b c d q^{2 n-1}\right)}
$$

(42)

The basis is orthogonal with the orthogonality condition for the Askey-Wilson polynomials
$P_{n}(x ; a, b, c, d \mid q)=a^{-n}(a b, a c, a d ; q)_{n} p_{n}$

$$
\begin{equation*}
\int_{-1}^{1} \frac{w(x)}{2 \pi \sqrt{1-x^{2}}} P_{m} P_{n} d x=h_{n} \delta_{m n} \tag{43}
\end{equation*}
$$

where $w(x)=\frac{h(x, 1) h(x,-1) h\left(x, q^{1 / 2}\right) h\left(x,-q^{1 / 2}\right)}{h(x, a) h(x, b) h(x, c) h(x, d)}$,

$$
h(x, \mu)=\prod_{k=0}^{\infty}\left[1-2 \mu x q^{k}+\mu^{2} q^{2 k}\right],
$$

and

$$
h_{n}=\frac{\left(a b c d q^{n-1} ; q\right)_{n}\left(a b c d q^{2 n} ; q\right)_{\infty}}{\left(q^{n+1}, a b q^{n}, a c q^{n}, a d q^{n}, b c q^{n}, b d q^{n}, c d q^{n} ; q\right)_{\infty}}
$$

(44)

Result: A representation π with basis $\left(p_{0}, p_{1}, p_{2}, \ldots\right)^{t}$
$\pi\left(D_{1}-\frac{\delta}{\beta} D_{0}\right)$ is diagonal with eigenvalues

$$
\lambda_{n}=\frac{1}{1-q}\left(b q^{-n}+d q^{n-1}\right)+\frac{1}{1-q}(1+b d)
$$

and $\pi\left(D_{0}-\frac{\gamma}{\alpha} D_{1}\right)$ is tridiagonal

$$
\pi\left(D_{0}-\frac{\gamma}{\alpha} D_{1}\right)=\frac{1}{1-q} b \mathcal{A}^{t}+\frac{1}{1-q}(1+a c)
$$

The dual representation π^{*} has a basis $p_{0}, p_{1}, p_{2}, \ldots$
with $\pi^{*}\left(D_{0}-\frac{\gamma}{\alpha} D_{1}\right)$ diagonal with eigenvalues

$$
\begin{equation*}
\lambda_{n}^{*}=\frac{1}{1-q}\left(a q^{-n}+c q^{n}\right)+\frac{1}{1-q}(1+a c) \tag{47}
\end{equation*}
$$

and $\pi^{*}\left(D_{1}-\frac{\delta}{\beta} D_{0}\right)$ tridiagonal

$$
\pi^{*}\left(D_{1}-\frac{\delta}{\beta} D_{0}\right)=\frac{1}{1-q} a \mathcal{A}+\frac{1}{1-q}(1+b d)
$$

The choice
$\langle w|=h_{0}^{-1 / 2}\left(p_{0}, 0,0, \ldots\right),|v\rangle=h_{0}^{-1 / 2}\left(p_{0}, 0,0, \ldots\right)^{t}$ (h_{0} is a normalization)

as eigenvectors of the diagonal matrices

$\pi\left(D_{1}-\frac{\delta}{\beta} D_{0}\right)$ and $\pi^{*}\left(D_{0}-\frac{\gamma}{\alpha} D_{1}\right)$
yields a solution to the boundary equations which uniquely relate a, b, c, d to $\alpha, \beta, \gamma, \delta$.

Namely
$a=\kappa_{+}^{*}(\alpha, \gamma), b=\kappa_{+}(\beta, \delta)$,
$c=\kappa_{-}^{*}(\alpha, \gamma), d=\kappa_{-}(\beta, \delta)$
where $\kappa_{ \pm}^{(*)}(\nu, \tau)\left(\equiv \kappa_{ \pm}^{(*)}\right)$ is

$$
\begin{equation*}
\kappa_{ \pm}^{(*)}=\frac{-(\nu-\tau-(1-q)) \pm \sqrt{(\nu-\tau-(1-q))^{2}+4 \nu \tau}}{2 \nu} \tag{49}
\end{equation*}
$$

EACH BOUNDARY OPERATOR and the TRANSFER MATRIX $D_{0}+D_{1}$
form an ISOMORPHIC TRIDIAGONAL PAIR

HENCE $\quad\left(D_{0}+D_{1}\right) p_{n}=(2+x) p_{n}$
and using the orthogonality relation in the form
$1=h_{0}^{-1} \int d y w\left(y+y^{-1}\right)\left|p\left(y+y^{-1}\right)\right\rangle\left\langle p\left(y+y^{-1}\right)\right|$
one obtains (omitting the long technical datails)

$$
\begin{array}{ll}
\text { A. } a>1, \quad a>b & \text { B. } b>1, \quad b>a \\
Z_{L}^{a} \simeq\left(\frac{(1+a)\left(1+a^{-1}\right)}{1-q}\right)^{L} & Z_{L}^{b} \simeq\left(\frac{(1+b)\left(1+b^{-1}\right)}{1-q}\right)^{L} \\
J \simeq(1-q) \frac{a}{(1+a)^{2}} & J \simeq(1-q) \frac{b}{(1+b)^{2}}
\end{array}
$$

and analogously, the correlation functions, the density profile, etc.

CONCLUSION

BOUNDARY ASKEY-WILSON ALGEBRA OF THE OPEN ASEP IS

THE LINEAR COVARIANCE ALGEBRA OF THE BULK $U_{q}(s u(2))$ SYMMETRY

AND ALLOWS FOR THE EXACT SOLVABILITY.

