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Motivation

Some important questions concerning dark
energy (DE):
• Does the DE fluid possess thermal  

(besides hydrodynamic) properties, such 
as temperature?

• What is the thermodynamic fate of the 
Universe dominated by DE?

• Can DE cluster?



• DE (substance of negative pressure) becomes 
hotter if it undergoes an adiabatic expansion

J.A.S. Lima, J.S. Alcaniz, PLB 600 (2004)

• Phantom DE violates the null energy condition 
(NEC: p+ >0) and hence must have either T<0 
or S<0

Y. Gong, B.Wang,  A. Wang, PRD 75 (2007) 

H. Mohseni Sadjadi, PRD 73 (2006) 

• T<0 implies that the phantom should be 
quantized (?) or defining the phantom space to 
be Euclidean (?)

P.F. Gonzalez-Diaz , C.L. Siguenza,  NPB  697 (2004)



Outline

• Basic cosmology
• Dark energy  models
• Thomas-Fermi correspondence
• K-essence thermodynamics



Basic cosmology

• Homogeneity of space

• Matter described by of a perfect fluid 

uµ - fluid velocity 
Tµν- energy-momentum tensor
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Field equations

• radiation

• matter
• vacuum
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• Flatness (k=0):                                   

• Vacuum energy density is related 
to the cosmological constant Λ ≠0 ⇒
accelerating expansion caused by a negative 
vacuum energy pressure!

• A new term is coined for a cosmic substance of 

negative pressure     Dark Energy 
• Comparison of the standard Big Bang model

with observations (SN 1a and CMB) require a 
vacuum energy density of the order

8 Gρ πΛ = Λ
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Dark energy models
• cosmological constant – energy density is 

constant in time
• k-essence and quintessence – new scalar field

– energy density varies with time
• quartessence – the term was coined to describe 

unified dark matter/dark energy models
• phantom energy – negative pressure exceeds 

so that the null energy condition is violated, i.e., 
p+ < 0

possible disastrous consequence : Big Rip –
decay of all bound systems in finite  time 

Recent review:
E.J. Copeland, M. Sami, S. Tsujikawa, hep-th/0603057



Quintessence

Scalar field θ with selfinteraction effectively 

providing a slow roll inflation for today

Field theory description of a perfect fluid if X>0

1
( )

2
X V θ= −L

( )T p u u pgµν µ ν µνρ= + −

, ,

2

det

S
T g

gg
µν µ ν µνµν

δ θ θ
δ

= = −
−

L

P.Ratra, J. Peebles PRD 37 (1988)

4 ( , )S d x X θ= ∫ L , ,X gµν
µ νθ θ=



where                                    

A suitable choice of V( ) yields a desired 
cosmology, or vice versa: from a desired  equation 
of state p=p( ) one can derive the Lagrangian of
the corresponding scalar field theory
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k-essence

Noncanonical kinetic term
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where                                    

Again, a suitable choice of A( ), K(X) and V( )
yields a desired cosmology. The reverse is not
unique: from a desired  equation of state p=p( )
one can derive uncountably many k-essence field 
theories.
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Examples
• Quintessence: A( )=1/2 , K(X)=X

• Phantom quintessence:  A( )=-1/2, K(X)=X

Obviously, 

Violation of NEC!
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• Tachion condensate V( )=0,

• Kinetic k-essence:  A( )=1 , V( )=0

To this class belong the ghost condensate
and the scalar Born-Infeld model
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X X

N. Arkani-Hamed et al , JHEP  05 (2004) 
R.J. Scherrer, PRL 93 (2004)
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Quartessence

Example: Chaplygin gas
An exotic fluid with an equation of state

The first definite model for a dark matter/energy 
unification

A. Kamenshchik, U. Moschella, V. Pasquier,  PLB 511 (2001)  
N.B., G.B. Tupper, R.D. Viollier, PLB 535 (2002)  
J.C. Fabris, S.V.B. Goncalves, P.E. de Souza, GRG 34 (2002) 
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The generalized Chaplygin gas

M.C. Bento, O. Bertolami, and A.A. Sen, PRD 66 (2002)

The term “quartessence” was coined to 
describe unified dark matter/dark energy
models

10 ≤≤−= α
ρα
A

p



the induced metric (“pull back”) of the 
bulk metric
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The The Chaplygin gas model is equivalent to Chaplygin gas model is equivalent to (scalar)(scalar)
DiracDirac--BornBorn--InfeldInfeld description of a Ddescription of a D--branbrane:e:

Nambu-Goto action of a p-brane moving in a
p+2 -dimensional bulk
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Choose the coordinates such that 
X =x , =0,..p, and let the p+1-th coordinate 
X p+1 be normal to the brane. From now on 

we set p=3. Then
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We find a k-essence type of theory

with

and hence
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In a homogeneous model the conservation equation yields 
the density as a function of the scale factor a

where B is an integration constant.The Chaplygin gas thus 
Interpolates between dust ( ~a 

-3 ) at large redshifts and a 
cosmological constant ( ~ A1/2=const) today and hence 
yields a correct homogeneous cosmology
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ThomasThomas--Fermi correspondenceFermi correspondence

Complex scalar field 
theories (canonical or 

phantom)

k-essence type of 
models (canonical or

phantom)

Under reasonable assumptions in the cosmological 
context there exist an equivalence 



Consider

=1  canonical;       =-1  phantom

Thomas-Fermi approximation

TF Lagrangian
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Applicability of the TF Applicability of the TF 
approximationapproximation

The approximation                     in homogeneous

cosmology means

Typically                   and 

This yields a requirement

Hence, the TF  approximation works extremely
well in the matter dominated era
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Equations of motion for and 

Legendre transformation
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correspondencecorrespondence

Complex scalar FT

Eqs. of motion

Kinetic k-essence FT

Eq. of motion

Parametric eq. of state
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Current conservationCurrent conservation

Klein-Gordon current

U(1) symmetry

kinetic k-essence current

shift symmetry
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Example: Example: QuarticQuartic potentialpotential

Scalar field potential

Kinetic k-essence
2 2 4

0 0 | | | |V V m λ= ± Φ + Φ�

2

2

1 1 1
( )

2 2 8
U Y Yη

λ λ
 = ± − 
 

2
1 1

( )
2 2

W X Xη
λ

 =  
 

∓



Example: Example: ChaplyginChaplygin gasgas

Scalar field potential

Scalar Born-Infeld FT
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K-essence thermodynamics
Consider a barotropic fluid with the eq. of state in a 
parametric form

Which satisfies the k-essence relation

Start from

If there exist a conserved  charge Q, with n=Q/V, then
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Obviously, if =0, a violation of NEC, i.e., p+ <0 implies 
either T<0 or S<0. Hence, for a reasonable thermodynamics 
we must have ≠0. It follows

and

This yields a partial differential equation for X

with a  general solution 
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For a general kinetic k-essence  Lagrangian L(X)

the entropy density is

where                               for the canonical and
for the phantom k-essence. 
Now we require S≥0,  with S=0 at T=0.    This implies

and at  T≠0
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Chemical potential in a general 
kinetic k-essence

A field theory described by

possesses a conserved current 

with conserved charge 

If we choose the hypersurface Σ at constant t then
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The chemical potential associated with the conserved 
charge Q is introduced via the grandcanonical partition
function

The Hamiltonian density is defined as a Legendre
transformation

with
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Functional integration over gives

The saddle point approximation yields the Euclidean 
Lagrangian

Hence, the effective Lagrangian is obtained from L (X)
by a replacement

Note similarity with the prescription for a complex scalar
FT
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In the comoving frame                     . Comparing this
with                             ,  we conclude that is a  function 
of t only. Then 

This, compared with the general solution

implies             ,               and            .

Hence, the main point is that, assuming a barotropic
equation of state p=p( ), the dark energy temperature

and entropy are zero.
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ConclusionsConclusions

• Using the TF correspondence in the cosmological 
context  most of the DE models can be represented 
by a kinetic k-essence

• A consistent grandcanonical description of DE 
involves two variables: the temperature T and the 
chemical potential 

• The resulting thermodynamic equations do not 
require a negative entropy even in the phantom 
case, i.e., when NEC is violated 

• Using the grandcanonical partition function in a 
saddle point approximation  a barotropic equation of 
state yields µ≠0, but T=0, S=0.


