Towards twisted standard model in Moyal space-time

T R Govindarajan, The Inst of Mathematical Sciences, Chennai, India

trg@imsc.res.in

Balkan Workshop, Kladova, Sept 2007

Plan of the talk

\diamond Motivations - quantum gravity and space time geometry

Plan of the talk

\diamond Motivations - quantum gravity and space time geometry
\diamond new developements poincare invariance, drinfeld twist,

Plan of the talk

\diamond Motivations - quantum gravity and space time geometry
\diamond new developements poincare invariance, drinfeld twist,
\diamond exclusion principle, paulipairs, uv-ir mixing

Plan of the talk

\diamond Motivations - quantum gravity and space time geometry
\diamond new developements poincare invariance, drinfeld twist,
\diamond exclusion principle, paulipairs, uv-ir mixing
\diamond twisted diffeomorphisms, gravity, gauge symmetry...

Plan of the talk

\diamond Motivations - quantum gravity and space time geometry
\diamond new developements poincare invariance, drinfeld twist,
\diamond exclusion principle, paulipairs, uv-ir mixing
\diamond twisted diffeomorphisms, gravity, gauge symmetry...
\diamond Gauge theory and standard model

Plan of the talk

\diamond Motivations - quantum gravity and space time geometry
\diamond new developements poincare invariance, drinfeld twist,
\diamond exclusion principle, paulipairs, uv-ir mixing
\diamond twisted diffeomorphisms, gravity, gauge symmetry...
\diamond Gauge theory and standard model
\diamond Conclusions

Plan of the talk

\diamond Motivations - quantum gravity and space time geometry
\diamond new developements poincare invariance, drinfeld twist,
\diamond exclusion principle, paulipairs, uv-ir mixing
\diamond twisted diffeomorphisms, gravity, gauge symmetry...
\diamond Gauge theory and standard model
\diamond Conclusions
\diamond Based on: hep-th/0406125,0410067(JHEP),0608179(Phys.Rev D) $+0706.1259+0708.0069+$ ongoing work

Motivations....

\diamond Quantum gravity -at Planck length - folklore- must have - noncommutative geometric structure - limit of classical gravity - emerge - commutative geometry of spacetime we know. Just like:

$$
\lim _{\hbar \longrightarrow 0} \text { Q.Physics }=\text { Cl.Physics }
$$

Motivations.....

\diamond Quantum gravity -at Planck length - folklore- must have - noncommutative geometric structure - limit of classical gravity - emerge - commutative geometry of spacetime we know. Just like:

$$
\lim _{\hbar \longrightarrow 0} \text { Q.Physics }=\text { Cl.Physics }
$$

\diamond Expectation:

$$
\begin{gathered}
\lim _{\text {Planck length } \longrightarrow 0} \text { Non commutative geometry } \\
=
\end{gathered}
$$

Commutative Geometry

Motivations.....

\diamond Any attempt to localise events to lengths close to Plancklength will bring in enormous energy and eventually lead to blackholes being created. This will distort the local geometry so much that quantum effects would be overwhelming.

Motivations....

\diamond Any attempt to localise events to lengths close to Plancklength will bring in enormous energy and eventually lead to blackholes being created. This will distort the local geometry so much that quantum effects would be overwhelming.
\diamond The above arguments have been posed in two independent places. (1) Sergio Doplicher's paper. (2)Podles lectures on quantum groups - where it is mentioned that Nahm has posed the questions and the need to go beyond conventional ideas of geometries.

Quote.....

\diamond It seems difficulties in defining geometry at infinitesimal distances were anticipated much earliar.

Quote.....

\diamond It seems difficulties in defining geometry at infinitesimal distances were anticipated much earliar.
\diamond...it seems that empirical notions on which the metrical determinations of space are founded, the notion of a solid body and a ray of light cease to be valid for the infinitely small. We are therefore quite at liberty to suppose that the metric relations of space in the infinitely small do not conform to hypotheses of geometry; and we ought in fact to suppose it, if we can thereby obtain a simpler explanation of phenomena....

Quote.....

\diamond It seems difficulties in defining geometry at infinitesimal distances were anticipated much earliar.
\diamond...it seems that empirical notions on which the metrical determinations of space are founded, the notion of a solid body and a ray of light cease to be valid for the infinitely small. We are therefore quite at liberty to suppose that the metric relations of space in the infinitely small do not conform to hypotheses of geometry; and we ought in fact to suppose it, if we can thereby obtain a simpler explanation of phenomena....
\diamond The above is from "On the hypotheses which lie at the bases of geometry", Bernhard Riemann, 1854 (from the translation by W K Clifford).

QFT in Moyal spacetimes...

\diamond Moyal spacetimes are defined by:

$$
\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \theta_{\mu \nu} \mathcal{I}
$$

QFT in Moyal spacetimes...

\diamond Moyal spacetimes are defined by:

$$
\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \theta_{\mu \nu} \mathcal{I}
$$

- This can be understood by the introduction of star product rule in the algebra of functions on R^{4}. The multiplication map of algebra of functions (on Moyal plane) $\mathcal{A}_{\theta}\left(R^{4}\right)$ is $f * g=m_{\theta}(f \otimes g)=m_{0}\left(F_{\theta}(f \otimes g)\right)$

QFT in Moyal spacetimes...

\diamond Moyal spacetimes are defined by:

$$
\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \theta_{\mu \nu} \mathcal{I}
$$

\diamond This can be understood by the introduction of star product rule in the algebra of functions on R^{4}. The multiplication map of algebra of functions (on Moyal plane) $\mathcal{A}_{\theta}\left(R^{4}\right)$ is $\left.f * g=m_{\theta}(f \otimes g)=m_{0}\left(F_{\theta}\right)(f \otimes g)\right)$
\diamond where

$$
F_{\theta}^{\prime}=e^{-\frac{i}{2}\left(-i \partial_{\mu}\right) \Theta^{\mu \nu} \otimes\left(-i \partial_{\nu}\right)}
$$

QFT in Moyal spacetimes...

\diamond Moyal spacetimes are defined by:

$$
\left[\hat{x}_{\mu}, \hat{x}_{\nu}\right]=i \theta_{\mu \nu} \mathcal{I}
$$

\diamond This can be understood by the introduction of star product rule in the algebra of functions on R^{4}. The multiplication map of algebra of functions (on Moyal plane) $\mathcal{A}_{\theta}\left(R^{4}\right)$ is $f * g=m_{\theta}(f \otimes g)=m_{0}\left(F_{\theta}(f \otimes g)\right)$
\diamond where

$$
F_{\theta}^{\prime}=e^{-\frac{i}{2}\left(-i \partial_{\mu}\right) \Theta^{\mu \nu} \otimes\left(-i \partial_{\nu}\right)}
$$

\diamond In commutative spacetime we have pointwise multiplication.

QFT in Moyal....

\diamond Consider the scalar field theory on the GM plane with the Lagrangian (density)

$$
\mathcal{L}_{*}=\frac{1}{2} \partial_{\mu} \Phi * \partial^{\mu} \Phi-\frac{1}{2} m^{2} \Phi * \Phi-\frac{\lambda}{4!} \Phi * \Phi * \Phi * \Phi,
$$

QFT in Moyal....

\diamond Consider the scalar field theory on the GM plane with the Lagrangian (density)

$$
\mathcal{L}_{*}=\frac{1}{2} \partial_{\mu} \Phi * \partial^{\mu} \Phi-\frac{1}{2} m^{2} \Phi * \Phi-\frac{\lambda}{4!} \Phi * \Phi * \Phi * \Phi,
$$

\diamond Poincare symmetry is lost. Hence the Wigner's classification for particles with mass (or massless) and spin(or helicity) cannot be used.

QFT in Moyal....

\diamond Consider the scalar field theory on the GM plane with the Lagrangian (density)

$$
\mathcal{L}_{*}=\frac{1}{2} \partial_{\mu} \Phi * \partial^{\mu} \Phi-\frac{1}{2} m^{2} \Phi * \Phi-\frac{\lambda}{4!} \Phi * \Phi * \Phi * \Phi,
$$

\diamond Poincare symmetry is lost. Hence the Wigner's classification for particles with mass (or massless) and spin(or helicity) cannot be used.
\diamond Singular $\theta \rightarrow 0$ limit makes the theory unsuitable as an effective theory.

Gauge theories...

\diamond Conventional Gauge transformations will not close with the new multiplication map given as star product. For this one introduces star gauge transformations: Under star gauge transformation

$$
A_{\mu}(x) \longrightarrow g(x) * A_{\mu}(x) * g^{\dagger}(x)-g(x) * \partial_{\mu} g(x)^{\dagger} .
$$

Gauge theories...

\diamond Conventional Gauge transformations will not close with the new multiplication map given as star product. For this one introduces star gauge transformations: Under star gauge transformation

$$
A_{\mu}(x) \longrightarrow g(x) * A_{\mu}(x) * g^{\dagger}(x)-g(x) * \partial_{\mu} g(x)^{\dagger} .
$$

- The NC field strength

$$
F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left(A_{\mu} * A_{\nu}-A_{\nu} * A_{\mu}\right)
$$

transforms covariantly viz.,

$$
F_{\mu \nu} \longrightarrow g(x) * F_{\mu \nu} * g^{\dagger}(x)
$$

under the star gauge transformation.

Gauge theories...

\diamond Conventional Gauge transformations will not close with the new multiplication map given as star product. For this one introduces star gauge transformations: Under star gauge transformation

$$
A_{\mu}(x) \longrightarrow g(x) * A_{\mu}(x) * g^{\dagger}(x)-g(x) * \partial_{\mu} g(x)^{\dagger} .
$$

\diamond The NC field strength
$F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left(A_{\mu} * A_{\nu}-A_{\nu} * A_{\mu}\right)$ transforms covariantly viz.,

$$
F_{\mu \nu} \longrightarrow g(x) * F_{\mu \nu} * g^{\dagger}(x)
$$

under the star gauge transformation.

- Since gauge transformations are introduced in this way there is no way to get gauge groups other than $U(N)$. Infact there is no standard model unless we extend. Charges of $U(1)_{E M}$ are also rigidly fixed.

Gauge theories...

\diamond Inspite of the above difficulties lot of papers have been written by expanding the star products and keeping to $\mathcal{O}(\theta)$ terms alone.

Gauge theories...

\diamond Inspite of the above difficulties lot of papers have been written by expanding the star products and keeping to $\mathcal{O}(\theta)$ terms alone.
\diamond For example the field strength $F_{\mu \nu}$ is expanded as:

$$
\begin{aligned}
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right] \\
& -\frac{1}{2} \theta^{\rho \gamma}\left(\partial_{\rho} A_{\mu} \partial_{\gamma} A_{\nu}-\partial_{\rho} A_{\nu} \partial_{\gamma} A_{\mu}\right)+\mathcal{O}\left(\theta^{2}\right)
\end{aligned}
$$

Gauge theories...

\diamond Inspite of the above difficulties lot of papers have been written by expanding the star products and keeping to $\mathcal{O}(\theta)$ terms alone.
\diamond For example the field strength $F_{\mu \nu}$ is expanded as:

$$
\begin{aligned}
F_{\mu \nu} & =\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}-i\left[A_{\mu}, A_{\nu}\right] \\
& -\frac{1}{2} \theta^{\rho \gamma}\left(\partial_{\rho} A_{\mu} \partial_{\gamma} A_{\nu}-\partial_{\rho} A_{\nu} \partial_{\gamma} A_{\mu}\right)+\mathcal{O}\left(\theta^{2}\right)
\end{aligned}
$$

\diamond Phenomenological consequences have been worked out. We will not elaborate more on this approach.

New developements...

\diamond The assumption that noncommutativity breaks in general Lorentz invariance is not completely correct. We will show Poincare group algebra acts on the $\mathcal{A}_{\theta}\left(R^{4}\right)$ moval plane if the coproduct is deformed. This is interesting and makes the situation better because while considering field theories on NC space one uses the representation theory of Poincare group without any justification. This will happen for space-space as well as space-time noncommutativity JHEP $0410,72,0411,68$.

New developements...

\diamond The assumption that noncommutativity breaks in general Lorentz invariance is not completely correct. We will show Poincare group algebra acts on the $\mathcal{A}_{\theta}\left(R^{4}\right)$ Moyal plane if the coproduct is deformed. This is interesting and makes the situation better because while considering field theories on NC space one uses the representation theory of Poincare group without any justification. This will happen for space-space as well as space-time noncommutativity JHEP $0410,72,0411,68$.
\diamond This leads to some interesting results like violation of exclusion principle, pauli-pairs, no uv-ir mixing,.... etc

New developements...

\diamond The assumption that noncommutativity breaks in general Lorentz invariance is not completely correct. We will show Poincare group algebra acts on the $\mathcal{A}_{\theta}\left(R^{4}\right)$ Moyal plane if the coproduct is deformed. This is interesting and makes the situation better because while considering field theories on NC space one uses the representation theory of Poincare group without any justification. This will happen for space-space as well as space-time noncommutativity JHEP $0410,72,0411,68$.
\diamond This leads to some interesting results like violation of exclusion principle, pauli-pairs, no uv-ir mixing,.... etc
\diamond This can help in putting experimental bounds on noncommutativity parameter.

poincare covariance....

\diamond If V is a vectorspace and G is a group, $\rho(g)$ a representation then we have the action of the group as: $V \longrightarrow \rho(g) V$.

poincare covariance....

\diamond If V is a vectorspace and G is a group, $\rho(g)$ a representation then we have the action of the group as: $V \longrightarrow \rho(g) V$.
\diamond The group algebra \mathcal{G} also acts on V. Its action is

$$
v \longrightarrow \int d g \alpha(g) \rho(g) v
$$

poincare covariance....

\diamond If V is a vectorspace and G is a group, $\rho(g)$ a representation then we have the action of the group as: $V \longrightarrow \rho(g) V$.
\diamond The group algebra \mathcal{G} also acts on V. Its action is

$$
v \longrightarrow \int d g \alpha(g) \rho(g) v
$$

\diamond On the tensor product space $V \otimes V$ the action usually is:

$$
v_{1} \otimes v_{2} \longrightarrow \int d g \alpha(g) \rho(g) v_{1} \otimes \rho(g) v_{2}
$$

poincare covariance....

\diamond If V is a vectorspace and G is a group, $\rho(g)$ a representation then we have the action of the group as: $V \longrightarrow \rho(g) V$.
\diamond The group algebra \mathcal{G} also acts on V. Its action is

$$
v \longrightarrow \int d g \alpha(g) \rho(g) v
$$

\diamond On the tensor product space $V \otimes V$ the action usually is:

$$
v_{1} \otimes v_{2} \longrightarrow \int d g \alpha(g) \rho(g) v_{1} \otimes \rho(g) v_{2}
$$

\diamond In the theory of Hopf algebra the action of \mathcal{G} is obtained using the coproduct which is homomorphism from $\mathcal{G} \rightarrow \mathcal{G} \otimes \mathcal{G}$

poincare covariance....

\diamond If $\Delta(g)$ is the coproduct then,

$$
\left.\Delta\left(\int d g \alpha(g) g\right)\right)=\int d g \alpha(g) \Delta(g)
$$

poincare covariance....

\diamond If $\Delta(g)$ is the coproduct then,

$$
\left.\Delta\left(\int d g \alpha(g) g\right)\right)=\int d g \alpha(g) \Delta(g)
$$

\diamond We have the action of the group on the tensor product of vector spaces as: $V \otimes V \longrightarrow(\rho \otimes \rho) \Delta(V \otimes V)$

poincare covariance....

\diamond If $\Delta(g)$ is the coproduct then,

$$
\left.\Delta\left(\int d g \alpha(g) g\right)\right)=\int d g \alpha(g) \Delta(g)
$$

\diamond We have the action of the group on the tensor product of vector spaces as: $V \otimes V \longrightarrow(\rho \otimes \rho) \Delta(V \otimes V)$
\diamond Any choice of Δ consistent with the Hopf algebraic conditions would define an action G on $V \otimes V$.

poincare covariance....

\diamond If $\Delta(g)$ is the coproduct then,

$$
\left.\Delta\left(\int d g \alpha(g) g\right)\right)=\int d g \alpha(g) \Delta(g)
$$

\diamond We have the action of the group on the tensor product of vector spaces as: $V \otimes V \longrightarrow(\rho \otimes \rho) \Delta(V \otimes V)$
\diamond Any choice of Δ consistent with the Hopf algebraic conditions would define an action G on $V \otimes V$.
\diamond The choices of coproducts are not all equivalent. For example the IRR's that occur in $\rho \otimes \rho$ and the CG coefficients depend on Δ. This is well known in quantum groups.

poincare covariance....

\diamond If V is in addition an algebra then we have a multiplication map

$$
m: V \otimes V \rightarrow V \text { and } \alpha \otimes \beta \rightarrow m(\alpha \otimes \beta)
$$

poincare covariance....

\diamond If V is in addition an algebra then we have a multiplication map

$$
m: V \otimes V \rightarrow V \text { and } \alpha \otimes \beta \rightarrow m(\alpha \otimes \beta)
$$

\diamond We have a compatibility condition:

$$
m[(\rho \otimes \rho) \Delta(g)(\alpha \otimes \beta)]=\rho(g) m(\alpha \otimes \beta)
$$

poincare covariance....

\diamond If V is in addition an algebra then we have a multiplication map

$$
m: V \otimes V \rightarrow V \text { and } \alpha \otimes \beta \rightarrow m(\alpha \otimes \beta)
$$

\diamond We have a compatibility condition:

$$
m[(\rho \otimes \rho) \Delta(g)(\alpha \otimes \beta)]=\rho(g) m(\alpha \otimes \beta)
$$

\diamond The above can be shown as commutative diagram!

poincare covariance....

\diamond If V is in addition an algebra then we have a multiplication map

$$
m: V \otimes V \rightarrow V \text { and } \alpha \otimes \beta \rightarrow m(\alpha \otimes \beta)
$$

\diamond We have a compatibility condition:

$$
m[(\rho \otimes \rho) \Delta(g)(\alpha \otimes \beta)]=\rho(g) m(\alpha \otimes \beta)
$$

\diamond If such a coproduct Δ exists then G acts as an automorphism on V.

poincare covariance....

\diamond Indeed such a twisted coproduct Drinéd for Moyal space is:

$$
\Delta_{\theta}(g)=\hat{F}_{\theta}^{-1}(g \otimes g) \hat{F}_{\theta}
$$

where $\hat{F}_{\theta}=e^{-\frac{1}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}}, P_{\mu}$ is the generator of translations.

poincare covariance....

\diamond Indeed such a twisted coproductDrinield for Moyal space is:

$$
\Delta_{\theta}(g)=\hat{F}_{\theta}^{-1}(g \otimes g) \hat{F}_{\theta}
$$

where $\hat{F}_{\theta}=e^{-\frac{1}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}}, P_{\mu}$ is the generator of translations.
\diamond It is easy to check that the coproduct is compatible with the multiplication map.

$$
m_{\theta}(\rho \otimes \rho) \Delta_{\theta}(g)(\alpha \otimes \beta)=m_{0}\left[F_{\theta}\left(F_{\theta}^{-1} \rho(g) \otimes \rho(g) F_{\theta}\right) \alpha \otimes \beta\right]
$$

which is $\rho(g)\left(\alpha *_{\theta} \beta\right)$.

poincare covariance....

\diamond Indeed such a twisted coproductDrineld for Moyal space is:

$$
\Delta_{\theta}(g)=\hat{F}_{\theta}^{-1}(g \otimes g) \hat{F}_{\theta}
$$

where $\hat{F}_{\theta}=e^{-\frac{1}{2} P_{\mu} \otimes \theta^{\mu \nu} P_{\nu}}, P_{\mu}$ is the generator of translations.
\diamond It is easy to check that the coproduct is compatible with the multiplication map.

$$
m_{\theta}(\rho \otimes \rho) \Delta_{\theta}(g)(\alpha \otimes \beta)=m_{0}\left[F_{\theta}\left(F_{\theta}^{-1} \rho(g) \otimes \rho(g) F_{\theta}\right) \alpha \otimes \beta\right]
$$

which is $\rho(g)\left(\alpha *_{\theta} \beta\right)$.
\diamond Tensor product of Plane waves $e_{p}(x)=e^{i p . x}$ under Lorentz transformations go as:

$$
e^{\frac{i}{2}(\Lambda p)_{\mu} \Theta^{\mu \nu}(\Lambda q)_{\nu}} e^{-\frac{i}{2} p_{\mu} \Theta^{\mu \nu} q_{\nu}} e_{\Lambda p} \otimes e_{\Lambda q}
$$

Twisting statistics...

\diamond For $\theta^{\mu \nu}=0$ statistics is imposed on the two-particle sector by working with the (a)symmetrized tensor product $\mathcal{A}_{0}\left(\mathbb{R}^{4}\right) \otimes_{s, a} \mathcal{A}_{0}\left(\mathbb{R}^{4}\right)$.

Twisting statistics...

\diamond For $\theta^{\mu \nu}=0$ statistics is imposed on the two-particle sector by working with the (a)symmetrized tensor product $\mathcal{A}_{0}\left(\mathbb{R}^{4}\right) \otimes_{s, a} \mathcal{A}_{0}\left(\mathbb{R}^{4}\right)$.
\diamond It has for example

$$
v \otimes_{s, a} w=\frac{1}{2}[v \otimes w \pm w \otimes v], \quad v, w \in \mathcal{A}_{0}\left(\mathbb{R}^{4}\right) .
$$

Twisting statistics...

\diamond For $\theta^{\mu \nu}=0$ statistics is imposed on the two-particle sector by working with the (a)symmetrized tensor product $\mathcal{A}_{0}\left(\mathbb{R}^{4}\right) \otimes_{s, a} \mathcal{A}_{0}\left(\mathbb{R}^{4}\right)$.
\diamond It has for example

$$
v \otimes_{s, a} w=\frac{1}{2}[v \otimes w \pm w \otimes v], \quad v, w \in \mathcal{A}_{0}\left(\mathbb{R}^{4}\right) .
$$

\diamond But the twisted coproduct does not preserve (a)symmetrization:

$$
\Delta_{\theta}(\phi)\left(v \otimes_{s, a} w\right) \notin \mathcal{A}_{0}\left(\mathbb{R}^{4}\right) \otimes_{s, a} \mathcal{A}_{0}\left(\mathbb{R}^{4}\right)
$$

Twisting statistics...

\diamond For $\theta^{\mu \nu}=0$ statistics is imposed on the two-particle sector by working with the (a)symmetrized tensor product $\mathcal{A}_{0}\left(\mathbb{R}^{4}\right) \otimes_{s, a} \mathcal{A}_{0}\left(\mathbb{R}^{4}\right)$.
\diamond It has for example

$$
v \otimes_{s, a} w=\frac{1}{2}[v \otimes w \pm w \otimes v], \quad v, w \in \mathcal{A}_{0}\left(\mathbb{R}^{4}\right) .
$$

\diamond But the twisted coproduct does not preserve (a)symmetrization:

$$
\Delta_{\theta}(\phi)\left(v \otimes_{s, a} w\right) \notin \mathcal{A}_{0}\left(\mathbb{R}^{4}\right) \otimes_{s, a} \mathcal{A}_{0}\left(\mathbb{R}^{4}\right)
$$

\diamond We are forced to twist statistics also.

Twisting statistics...

\diamond Let τ_{0} be the flip map:

$$
\tau_{0}(v \otimes w)=w \otimes v
$$

Twisting statistics...

\diamond Let τ_{0} be the flip map:

$$
\tau_{0}(v \otimes w)=w \otimes v
$$

\diamond Then

$$
\tau_{\theta}:=F_{\theta}^{-1} \tau_{0} F_{\theta}=F_{\theta}^{-2} \tau_{0}
$$

commutes with $\Delta_{\theta}(\phi)$.

Twisting statistics...

\diamond Let τ_{0} be the flip map:

$$
\tau_{0}(v \otimes w)=w \otimes v
$$

\diamond Then

$$
\tau_{\theta}:=F_{\theta}^{-1} \tau_{0} F_{\theta}=F_{\theta}^{-2} \tau_{0}
$$

commutes with $\Delta_{\theta}(\phi)$.
\diamond The tensor product $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right) \otimes_{s_{\theta}, a_{\theta}} \mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right)$ with twisted (a)symmetrization is:

$$
v \otimes_{s_{\theta}, a_{\theta}} w=\frac{1}{2}\left[I \pm \tau_{\theta}\right](v \otimes w)
$$

Twisting statistics...

\diamond Let τ_{0} be the flip map:

$$
\tau_{0}(v \otimes w)=w \otimes v
$$

\diamond Then

$$
\tau_{\theta}:=F_{\theta}^{-1} \tau_{0} F_{\theta}=F_{\theta}^{-2} \tau_{0}
$$

commutes with $\Delta_{\theta}(\phi)$.
\diamond The tensor product $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right) \otimes_{s_{\theta}, a_{\theta}} \mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right)$ with twisted (a)symmetrization is:

$$
v \otimes_{s_{\theta}, a_{\theta}} w=\frac{1}{2}\left[I \pm \tau_{\theta}\right](v \otimes w)
$$

\diamond Like in standard QM, statistics is superselected and all observables commute with τ_{θ}.

scalar field......

- If a scalar field has Fourier expansion as:

$$
\phi=\int D p\left(a(p) e_{p}+a^{\dagger}(p) e_{-p}\right)
$$

scalar field......

- If a scalar field has Fourier expansion as:

$$
\phi=\int D p\left(a(p) e_{p}+a^{\dagger}(p) e_{-p}\right)
$$

\diamond then

$$
\rho(\Lambda) \hat{\phi}(p)=\hat{\phi}\left(\Lambda^{-1} p\right), \quad \rho\left(e^{i P \cdot a} \hat{\phi}\right)(p)=e^{i p . a} \hat{\phi}(p)
$$

scalar field......

- If a scalar field has Fourier expansion as:

$$
\phi=\int D p\left(a(p) e_{p}+a^{\dagger}(p) e_{-p}\right)
$$

\diamond then

$$
\rho(\Lambda) \hat{\phi}(p)=\hat{\phi}\left(\Lambda^{-1} p\right), \quad \rho\left(e^{i P . a} \hat{\phi}\right)(p)=e^{i p . a} \hat{\phi}(p)
$$

\diamond But on $\phi \otimes \chi$, twisted Lorentz transformations act as:

$$
\Delta_{\theta}(\Lambda)(\phi \otimes \chi)(p, q)=F_{\theta}\left(\Lambda^{-1} p, \Lambda^{-1} q\right) F_{\theta}^{-1}(p, q) \phi\left(\Lambda^{-1} p\right) \chi\left(\Lambda^{-1} q\right)
$$

scalar field......

- If a scalar field has Fourier expansion as:

$$
\phi=\int D p\left(a(p) e_{p}+a^{\dagger}(p) e_{-p}\right)
$$

\diamond then

$$
\rho(\Lambda) \hat{\phi}(p)=\hat{\phi}\left(\Lambda^{-1} p\right), \quad \rho\left(e^{i P . a} \hat{\phi}\right)(p)=e^{i p . a} \hat{\phi}(p)
$$

\diamond But on $\phi \otimes \chi$, twisted Lorentz transformations act as:

$$
\Delta_{\theta}(\Lambda)(\phi \otimes \chi)(p, q)=F_{\theta}\left(\Lambda^{-1} p, \Lambda^{-1} q\right) F_{\theta}^{-1}(p, q) \phi\left(\Lambda^{-1} p\right) \chi\left(\Lambda^{-1} q\right)
$$

\diamond where $F_{\theta}(p, q)=e^{-\frac{i}{2} p \cdot \theta \cdot q}$.

exclusion principle......

\diamond We will now show that for the scalar field ϕ we have new deformed operator relations:

$$
a(p) a(q)=\eta F_{\theta}^{-2}(q, p) a(q) a(p)
$$

and

exclusion principle......

\diamond We will now show that for the scalar field ϕ we have new deformed operator relations:
\diamond

$$
a(p) a^{\dagger}(q)=\eta F_{\theta}^{-2}(q, p) a^{\dagger}(q) a(p)+2 p_{0} \delta(p-q)
$$

exclusion principle......

\diamond We will now show that for the scalar field ϕ we have new deformed operator relations:
\diamond

$$
a(p) a^{\dagger}(q)=\eta F_{\theta}^{-2}(q, p) a^{\dagger}(q) a(p)+2 p_{0} \delta(p-q)
$$

\diamond If we suppose

$$
a(p) a(q)=G_{\theta}(p, q) a(q) a(p)
$$

then

$$
U(\Lambda) G_{\theta}(p, q) U(\Lambda)^{-1}=G_{\theta}(p, q)
$$

new exclusion principle......

\diamond Using the transformations of $a(p) a(q)=(a \otimes a)(p, q)$ we get:

new exclusion principle......

\diamond Using the transformations of $a(p) a(q)=(a \otimes a)(p, q)$ we get:
\diamond
-

$$
G_{\theta}\left(\Lambda^{-1} p, \Lambda^{-1} q\right) F_{\theta}^{2}\left(\Lambda^{-1} q, \Lambda^{-1} p\right)=G_{\theta}(p, q) F_{\theta}^{2}(q, p)
$$

new exclusion principle......

\diamond Using the transformations of $a(p) a(q)=(a \otimes a)(p, q)$ we get:
\diamond

$$
G_{\theta}\left(\Lambda^{-1} p, \Lambda^{-1} q\right) F_{\theta}^{2}\left(\Lambda^{-1} q, \Lambda^{-1} p\right)=G_{\theta}(p, q) F_{\theta}^{2}(q, p)
$$

\diamond The solution of the $\stackrel{\diamond}{\circ}$ is:

$$
G_{\theta}(p, q)=\eta F_{\theta}^{-2}(q, p)
$$

new exclusion principle......

\diamond Using the transformations of $a(p) a(q)=(a \otimes a)(p, q)$ we get:
\diamond

$$
G_{\theta}\left(\Lambda^{-1} p, \Lambda^{-1} q\right) F_{\theta}^{2}\left(\Lambda^{-1} q, \Lambda^{-1} p\right)=G_{\theta}(p, q) F_{\theta}^{2}(q, p)
$$

\diamond The solution of the $\stackrel{\diamond}{\circ}$ is:

$$
G_{\theta}(p, q)=\eta F_{\theta}^{-2}(q, p)
$$

\diamond The above was known as Faddeev - Zamolodchikov algebra in 2D integrable models. For fermions(bosons), in the limit of $\theta=0$, we have

$$
\eta=-1(+1)
$$

new exclusion principle......

$\diamond \mathrm{A}$ single particle state is given by
$|\alpha\rangle=\int D p \alpha(p) a_{p}^{\dagger}|0\rangle$. We can ask whether two particle symmetric state

$$
|\alpha, \alpha\rangle=\int D p D q \alpha(p) \alpha(q) a_{p}^{\dagger} a_{q}^{\dagger}|0\rangle
$$

is permitted - violating pauli statistics.

new exclusion principle......

$\diamond \mathrm{A}$ single particle state is given by
$|\alpha\rangle=\int D p \alpha(p) a_{p}^{\dagger}|0\rangle$. We can ask whether two particle symmetric state

$$
|\alpha, \alpha\rangle=\int D p D q \alpha(p) \alpha(q) a_{p}^{\dagger} a_{q}^{\dagger}|0\rangle
$$

is permitted - violating pauli statistics.
\diamond And the answer- its norm is:

$$
\int D p D q(\bar{\alpha}(p) \alpha(p) \bar{\alpha}(q) \alpha(q)[1-\cos (p \cdot \Theta \cdot q)]
$$

and is nonzero!.

new exclusion principle......

\diamond A single particle state is given by
$|\alpha\rangle=\int D p \alpha(p) a_{p}^{\dagger}|0\rangle$. We can ask whether two particle symmetric state

$$
|\alpha, \alpha\rangle=\int D p D q \alpha(p) \alpha(q) a_{p}^{\dagger} a_{q}^{\dagger}|0\rangle
$$

is permitted - violating pauli statistics.
\diamond And the answer- its norm is:

$$
\int D p D q(\bar{\alpha}(p) \alpha(p) \bar{\alpha}(q) \alpha(q)[1-\cos (p . \Theta . q)]
$$

and is nonzero!.
\diamond pauli pairs- we can also show even more intriguing features like two particle states of certain types are not allowed. These are generalisations of two particle symmetric states for fermions bal,giorgio,trg, vaidya.

uv/ir mixing,....

\diamond We shall briefly take up issues like uv/ir mixing. Earliar quantisations were done by canonical commutation rules sacrificing poincare covariance. Now it is clear that to maintain covariance the operator relations have to be deformed.

uv/ir mixing,....

\diamond We shall briefly take up issues like uv/ir mixing. Earliar quantisations were done by canonical commutation rules sacrificing poincare covariance. Now it is clear that to maintain covariance the operator relations have to be deformed.
\diamond Given the single particle annihilation operators a_{p} we can define operators c_{p} obeying standard relations.

$$
a_{p}=c_{p} e^{\frac{i}{2} p_{\mu} \Theta^{\mu \nu}} P_{\nu}
$$

Here P_{μ} is the translations generator.

$$
P_{\mu}=\int d \mu(p) p_{\mu} a^{\dagger}(p) a(p)
$$

uv/ir mixing,...

\diamond The interaction Hamiltonian is:

$$
H_{I}(t)=\lambda \int d x: \phi_{*}^{n}:
$$

uv/ir mixing,...

\diamond The interaction Hamiltonian is:

$$
H_{I}(t)=\lambda \int d x: \phi_{*}^{n}:
$$

\diamond Hence the S-matrix is given by:

$$
S_{\theta}=T e^{i \int d t H_{I}(t)}
$$

uv/ir mixing,...

\diamond The interaction Hamiltonian is:

$$
H_{I}(t)=\lambda \int d x: \phi_{*}^{n}:
$$

- Hence the S-matrix is given by:

$$
S_{\theta}=T e^{i \int d t H_{I}(t)}
$$

\diamond to order λ we will have

$$
: \phi * \phi * \phi \cdots \phi:=: a\left(p_{1}\right) a\left(p_{2}\right) \ldots a\left(p_{n}\right):
$$

which simplifies to

$$
: c\left(p_{1}\right) c\left(p_{2}\right) \ldots c\left(p_{n}\right): e_{p_{1}+p_{2}+\cdots p_{n}}(x) e^{\frac{i}{2}\left(p_{1}+p_{2}+\cdots p_{n}\right) \circ \Theta \circ P}
$$

uv/ir mixing,...

\diamond And using 4-momentum conservation we get

$$
S_{\theta}^{(1)}=S_{0}^{(1)}
$$

uv/ir mixing,...

\diamond And using 4-momentum conservation we get

$$
S_{\theta}^{(1)}=S_{0}^{(1)}
$$

\diamond This can be extended to all orders using 4-momentum conservation and partial integrations to prove that $S_{\theta}=S_{0}$. Hence there will not be any uv/ir mixing
bal,pinzul,babar.

uv/ir mixing,...

\diamond And using 4-momentum conservation we get

$$
S_{\theta}^{(1)}=S_{0}^{(1)}
$$

\diamond This can be extended to all orders using 4-momentum conservation and partial integrations to prove that $S_{\theta}=S_{0}$. Hence there will not be any uv/ir mixing
bal,pinzul,babar.
\diamond But the scattering amplitudes will depend on θ as the in and out states are changed.

uv/ir mixing,...

\diamond And using 4-momentum conservation we get $S_{\theta}^{(1)}=S_{0}^{(1)}$
\diamond This can be extended to all orders using 4-momentum conservation and partial integrations to prove that $S_{\theta}=S_{0}$. Hence there will not be any uv/ir mixing bal,pinzul,babar.
\diamond But the scattering amplitudes will depend on θ as the in and out states are changed.
\diamond There is an easier way to understand the above features as well as introduce diffeos and gauge symmetry using a novel commutative algebraic substructure inside $\mathcal{A}_{\theta}\left(R^{4}\right)$.

The commutative algebra

\diamond Let us see how we can define diffeomorphisms and gauge symmetries in this framework. But the coproduct again should be changed to be compatible with multiplication.wess eta, But we will adopt a novel way.

The commutative algebra

\diamond Let us see how we can define diffeomorphisms and gauge symmetries in this framework. But the coproduct again should be changed to be compatible with multiplication.wess eta, But we will adopt a novel way.
\diamond Consider $x_{\mu}^{c}=\frac{x_{\mu}^{L}+x_{\mu}^{R}}{2}$

The commutative algebra

\diamond Let us see how we can define diffeomorphisms and gauge symmetries in this framework. But the coproduct again should be changed to be compatible with multiplication.wess eta, But we will adopt a novel way.
\diamond Consider $x_{\mu}^{c}=\frac{x_{\mu}^{L}+x_{\mu}^{R}}{x^{R}}$
\diamond where $x_{\mu}^{L} \alpha=x_{\mu} * \alpha \quad$ and $\quad x_{\mu}^{R} \alpha=\alpha * x_{\mu}$.

The commutative algebra

\diamond Let us see how we can define diffeomorphisms and gauge symmetries in this framework. But the coproduct again should be changed to be compatible with multiplication.wess eta, But we will adopt a novel way.
\diamond Consider $x_{\mu}^{c}=\frac{x_{\mu}^{L}+x_{\mu}^{R}}{2}$
\diamond where $x_{\mu}^{L} \alpha=x_{\mu} * \alpha \quad$ and $\quad x_{\mu}^{R} \alpha=\alpha * x_{\mu}$.
\diamond It is easy to see

$$
\left[x_{\mu}^{c}, x_{\nu}^{c}\right]=0
$$

This simply means x_{μ}^{c} form a basis for commutative algebra $A_{0}\left(R^{4}\right)$. One can define Poincare group of generators using x_{μ}^{c} as

$$
M_{\mu \nu}=x_{\mu}^{c} p_{\nu}-x_{\nu}^{c} p_{\mu}, p_{\mu}=-i \partial_{\mu}
$$

Diffeomorphism and gauge invariance

\diamond We get modified Leibnitz rule:

$$
\begin{aligned}
M_{\mu \nu}(\alpha * \beta) & =M_{\mu \nu} \alpha * \beta+\alpha * M_{\mu \nu} \beta \\
& -\frac{1}{2}\left[(p . \theta)_{\mu} \alpha * p_{\nu} \beta-\left(p_{\nu} \alpha *(p . \theta)_{\mu} \beta-\mu \leftrightarrow \nu\right]\right.
\end{aligned}
$$

This is exactly same as what we get from twisted coproduct!

Diffeomorphism and gauge invariance

\diamond We get modified Leibnitz rule:

$$
\begin{aligned}
M_{\mu \nu}(\alpha * \beta) & =M_{\mu \nu} \alpha * \beta+\alpha * M_{\mu \nu} \beta \\
& -\frac{1}{2}\left[(p . \theta)_{\mu} \alpha * p_{\nu} \beta-\left(p_{\nu} \alpha *(p . \theta)_{\mu} \beta-\mu \leftrightarrow \nu\right]\right.
\end{aligned}
$$

This is exactly same as what we get from twisted coproduct!
\diamond We can also write:

$$
x^{\mu c}=x^{\mu L}+\frac{1}{2} \theta^{\mu \nu} p_{\nu}
$$

Diffeomorphism and gauge invariance

\diamond We get modified Leibnitz rule:

$$
\begin{aligned}
M_{\mu \nu}(\alpha * \beta) & =M_{\mu \nu} \alpha * \beta+\alpha * M_{\mu \nu} \beta \\
& -\frac{1}{2}\left[(p . \theta)_{\mu} \alpha * p_{\nu} \beta-\left(p_{\nu} \alpha *(p . \theta)_{\mu} \beta-\mu \leftrightarrow \nu\right]\right.
\end{aligned}
$$

This is exactly same as what we get from twisted coproduct!
\diamond We can also write:

$$
x^{\mu c}=x^{\mu L}+\frac{1}{2} \theta^{\mu \nu} p_{\nu}
$$

$\diamond M_{\mu \nu}$ is a particular vector field. This can be extended to general vector fields $v=v^{\mu}\left(x^{c}\right) \partial_{\mu}$.

Diffeomorphism and gauge invariance

\diamond We get modified Leibnitz rule:

$$
\begin{aligned}
M_{\mu \nu}(\alpha * \beta) & =M_{\mu \nu} \alpha * \beta+\alpha * M_{\mu \nu} \beta \\
& -\frac{1}{2}\left[(p . \theta)_{\mu} \alpha * p_{\nu} \beta-\left(p_{\nu} \alpha *(p . \theta)_{\mu} \beta-\mu \leftrightarrow \nu\right]\right.
\end{aligned}
$$

This is exactly same as what we get from twisted coproduct!
\diamond We can also write:

$$
x^{\mu c}=x^{\mu L}+\frac{1}{2} \theta^{\mu \nu} p_{\nu}
$$

$\diamond M_{\mu \nu}$ is a particular vector field. This can be extended to general vector fields $v=v^{\mu}\left(x^{c}\right) \partial_{\mu}$.
\diamond These generate the diffeomorphisms on the Moyal spacetime.

Diffeomorphism and gauge invariance

\diamond Consider covariant derivative $D_{\mu}=\partial_{\mu}+\Gamma_{\mu}+\omega_{\mu}$. If we assume the framefields e_{μ}^{a} are dependent only on x^{c} then pure gravity without matter can be treated as in commutative spacetimes.

Diffeomorphism and gauge invariance

\diamond Consider covariant derivative $D_{\mu}=\partial_{\mu}+\Gamma_{\mu}+\omega_{\mu}$. If we assume the framefields e_{μ}^{a} are dependent only on x^{c} then pure gravity without matter can be treated as in commutative spacetimes.
\diamond Gauge fields A_{λ} transform as one-forms under diffeomorphisms for $\theta^{\mu \nu}=0$. For $\theta^{\mu \nu} \neq 0$, the vector fields v^{μ} generating diffeomorphisms depend on x^{c}.

Diffeomorphism and gauge invariance

\diamond Consider covariant derivative $D_{\mu}=\partial_{\mu}+\Gamma_{\mu}+\omega_{\mu}$. If we assume the framefields e_{μ}^{a} are dependent only on x^{c} then pure gravity without matter can be treated as in commutative spacetimes.
\diamond Gauge fields A_{λ} transform as one-forms under diffeomorphisms for $\theta^{\mu \nu}=0$. For $\theta^{\mu \nu} \neq 0$, the vector fields v^{μ} generating diffeomorphisms depend on x^{c}.
\diamond If a diffeomorphism acts on A_{λ} in a conventional way and $A_{\lambda}, \delta A_{\lambda}$ are to depend on just one combination of noncommutative coordinates, then A_{λ} can depend only on x^{c}.

Diffeomorphism and gauge invariance

\diamond Twisted coproducts for diffeos are needed to maintain them as symmetries in gravity. But with gravity and gauge fields present, the group of importance is not just $\mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$, but its semi-direct product $\mathcal{G} \ltimes \mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$.

Diffeomorphism and gauge invariance

\diamond Twisted coproducts for diffeos are needed to maintain them as symmetries in gravity. But with gravity and gauge fields present, the group of importance is not just $\mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$, but its semi-direct product $\mathcal{G} \ltimes \mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$.
\diamond it is natural to keep $\mathcal{G} \ltimes \mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$ for $\theta^{\mu \nu} \neq 0$. $\mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$ perform diffeomorphisms. We require elements of \mathcal{G} are constructed from the elements of the algebra generated by x^{c} and the group \mathcal{G} is independent of $\theta^{\mu \nu}$.

Diffeomorphism and gauge invariance

\diamond Twisted coproducts for diffeos are needed to maintain them as symmetries in gravity. But with gravity and gauge fields present, the group of importance is not just $\mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$, but its semi-direct product $\mathcal{G} \ltimes \mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$.
\diamond it is natural to keep $\mathcal{G} \ltimes \mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$ for $\theta^{\mu \nu} \neq 0$. $\mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$ perform diffeomorphisms. We require elements of \mathcal{G} are constructed from the elements of the algebra generated by x^{c} and the group \mathcal{G} is independent of $\theta^{\mu \nu}$.
\diamond The conclusion is that pure gravity and gauge sectors are unaffected by noncommutativity.

Diffeomorphism and gauge invariance

\diamond In the standard approach to noncommutative gauge groups covariant derivatives act with the *-product it is possible to have only particular representations of $U(N)$ gauge groups or use enveloping algebras. There is no such limitation now where the gauge group.

Diffeomorphism and gauge invariance

\diamond In the standard approach to noncommutative gauge groups covariant derivatives act with the *-product it is possible to have only particular representations of $U(N)$ gauge groups or use enveloping algebras. There is no such limitation now where the gauge group.
\diamond In quantum Hall effect, the algebra of observables is $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right) \otimes \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$. Here too covariant derivatives of the $U(1)$ electromagnetism do act in the same way and not with $\mathrm{a} *$ product.

Diffeomorphism and gauge invariance

\diamond In the standard approach to noncommutative gauge groups covariant derivatives act with the * -product it is possible to have only particular representations of $U(N)$ gauge groups or use enveloping algebras. There is no such limitation now where the gauge group.
\diamond In quantum Hall effect, the algebra of observables is $\mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right) \otimes \mathcal{A}_{\theta}\left(\mathbb{R}^{2}\right)$. Here too covariant derivatives of the $U(1)$ electromagnetism do act in the same way and not with a $*$ product.
\diamond In Wess et al.,the covariant derivative D_{μ}^{*} acts with $\mathrm{a} *$ -product. Hence:

$$
\mathcal{D}_{\mu}^{*}=D_{\mu}^{*} e^{-\frac{i}{2} a d} \overleftarrow{\partial}_{\lambda} \theta^{\lambda \rho} \vec{\partial}_{\rho} ; \mathcal{D}_{\mu}^{*} * \alpha=D_{\mu}^{*} \alpha
$$

Gauge group on matter fields

\diamond Fields transform non-trivially under \mathcal{G} or "global" group
G are modules over $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right)$. If a d-dimensional representation of G is involved, they can be elements of $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right) \otimes \mathbb{C}^{d}$.

Gauge group on matter fields

\diamond Fields transform non-trivially under \mathcal{G} or "global" group G are modules over $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right)$. If a d-dimensional representation of G is involved, they can be elements of $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right) \otimes \mathbb{C}^{d}$.
\diamond We need the action of gauge transformations on these modules compatibly with the $*$-product.

Gauge group on matter fields

\diamond Fields transform non-trivially under \mathcal{G} or "global" group G are modules over $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right)$. If a d-dimensional representation of G is involved, they can be elements of $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right) \otimes \mathbb{C}^{d}$.
\diamond We need the action of gauge transformations on these modules compatibly with the $*$-product.
\diamond We should form gauge scalars out of elements of $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right) \otimes \mathbb{C}^{d}$ and their adjoints. We can do these consistently only if the gauge group also has a twisted coproduct.

Gauge group on matter fields

\diamond Fields transform non-trivially under \mathcal{G} or "global" group G are modules over $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right)$. If a d-dimensional representation of G is involved, they can be elements of $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right) \otimes \mathbb{C}^{d}$.
\diamond We need the action of gauge transformations on these modules compatibly with the $*$-product.
\diamond We should form gauge scalars out of elements of $\mathcal{A}_{\theta}\left(\mathbb{R}^{4}\right) \otimes \mathbb{C}^{d}$ and their adjoints. We can do these consistently only if the gauge group also has a twisted coproduct.
\diamond The twisted coproduct on \mathcal{G} is,

$$
\Delta_{\theta}\left(g\left(x^{c}\right)=F_{\theta}^{-1}\left[g\left(x^{c}\right) \otimes g\left(x^{c}\right)\right] F_{\theta},\right.
$$

and is compatible with the $*$-multiplication.

Gauge group on matter fields

\diamond This twisted coproduct $\Delta_{\theta}\left(g\left(\hat{x}^{c}\right)\right.$ preserves the semi-direct product structure $\mathcal{G} \ltimes \mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$.

Gauge group on matter fields

\diamond This twisted coproduct $\Delta_{\theta}\left(g\left(\hat{x}^{c}\right)\right.$ preserves the semi-direct product structure $\mathcal{G} \ltimes \mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$.
\diamond Next we need covariant derivatives consistently defined to complete the program.

Gauge group on matter fields

\diamond This twisted coproduct $\Delta_{\theta}\left(g\left(\hat{x}^{c}\right)\right.$ preserves the semi-direct product structure $\mathcal{G} \ltimes \mathcal{D}_{0}\left(\mathbb{R}^{4}\right)$.
\diamond Next we need covariant derivatives consistently defined to complete the program.
\diamond We already saw the twisted commutation relations:

$$
\begin{aligned}
a(p) a(q) & =e^{i p \wedge q} a(q) a(p) \\
a(p) a^{\dagger}(q) & =e^{-i p \wedge q} a^{\dagger}(q) a(p)+2 p_{0} \delta^{(3)}(p-q)
\end{aligned}
$$

Dressing transformation..

\diamond Now $a(p), a^{\dagger}(p)$ can be realized in terms of untwisted Fock space operators $c(p), c^{\dagger}(p)$ by the "dressing transformation" grosse,zamolodchikov,faddeev

$$
\begin{aligned}
a(p) & =c(p) e^{-\frac{i}{2} p \wedge P}, \quad a^{\dagger}(p)=c^{\dagger}(q) e^{\frac{i}{2} p \wedge P}, \text { where } \\
P_{\mu} & =\int d \mu(q) q_{\mu}\left[a^{\dagger}(q) a(q)\right]=\text { total momentum operator. }
\end{aligned}
$$

Dressing transformation..

\diamond Now $a(p), a^{\dagger}(p)$ can be realized in terms of untwisted Fock space operators $c(p), c^{\dagger}(p)$ by the "dressing transformation" grosse,zamolodchikov,faddeev

$$
\begin{aligned}
a(p) & =c(p) e^{-\frac{i}{2} p \wedge P}, \quad a^{\dagger}(p)=c^{\dagger}(q) e^{\frac{i}{2} p \wedge P}, \text { where } \\
P_{\mu} & =\int d \mu(q) q_{\mu}\left[a^{\dagger}(q) a(q)\right]=\text { total momentum operator. }
\end{aligned}
$$

\diamond Then $\phi(x)$ may be written in terms of commutative fields ϕ^{c} as

$$
\phi(x)=\phi^{c} e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}(x)
$$

Dressing transformation..

\diamond Now $a(p), a^{\dagger}(p)$ can be realized in terms of untwisted Fock space operators $c(p), c^{\dagger}(p)$ by the "dressing transformation" grosse,zamolodchikov,faddeev

$$
\begin{aligned}
a(p) & =c(p) e^{-\frac{i}{2} p \wedge P}, \quad a^{\dagger}(p)=c^{\dagger}(q) e^{\frac{i}{2} p \wedge P}, \text { where } \\
P_{\mu} & =\int d \mu(q) q_{\mu}\left[a^{\dagger}(q) a(q)\right]=\text { total momentum operator. }
\end{aligned}
$$

\diamond Then $\phi(x)$ may be written in terms of commutative fields ϕ^{c} as

$$
\phi(x)=\phi^{c} e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}(x)
$$

\diamond If $\phi_{1}, \phi_{2}, \cdots \phi_{n}$ are quantum fields, $\phi_{i}(x)=\phi_{i}^{c} e^{\frac{1}{2}} \overleftarrow{\partial} \wedge P(x)$,

Covariant derivatives,...

\diamond then

$$
\left(\phi_{1} * \phi_{2} * \cdots \phi_{n}\right)(x)=\left(\phi_{1}^{c} \phi_{2}^{c} \cdots \phi_{n}^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}(x)
$$

Covariant derivatives,...

\diamond then

$$
\left(\phi_{1} * \phi_{2} * \cdots \phi_{n}\right)(x)=\left(\phi_{1}^{c} \phi_{2}^{c} \cdots \phi_{n}^{c}\right) e^{\frac{1}{2}} \overleftarrow{\partial} \wedge P(x)
$$

\diamond For example Interaction Hamiltonian density is:

$$
\mathcal{H}_{I \theta}=\mathcal{H}_{I 0} e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

Covariant derivatives,...

॰ then

$$
\left(\phi_{1} * \phi_{2} * \cdots \phi_{n}\right)(x)=\left(\phi_{1}^{c} \phi_{2}^{c} \cdots \phi_{n}^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}(x)
$$

\diamond For example Interaction Hamiltonian density is:

$$
\mathcal{H}_{I \theta}=\mathcal{H}_{I 0} e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

- The covariant derivative should transport consistently with the statistics and gauge transformations and the natural choice is:

$$
D_{\mu} \phi=\left(\left(D_{\mu}\right)^{c} \phi^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

Covariant derivatives,...

\diamond It is easy to check:

$$
\left[D_{\mu}, D_{\nu}\right] \varphi=\left(\left[D_{\mu}^{c}, D_{\nu}^{c}\right] \varphi^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}=\left(F_{\mu \nu}^{c} \varphi^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

Covariant derivatives,...

\diamond It is easy to check:

$$
\left[D_{\mu}, D_{\nu}\right] \varphi=\left(\left[D_{\mu}^{c}, D_{\nu}^{c}\right] \varphi^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}=\left(F_{\mu \nu}^{c} \varphi^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

\diamond We can also write:

$$
D_{\mu} \varphi=\left(D_{\mu}^{c} e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}\right) \star\left(\varphi^{c} e^{\frac{1}{2}} \overleftarrow{\partial} \wedge P\right)
$$

Covariant derivatives,...

\diamond It is easy to check:

$$
\left[D_{\mu}, D_{\nu}\right] \varphi=\left(\left[D_{\mu}^{c}, D_{\nu}^{c}\right] \varphi^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}=\left(F_{\mu \nu}^{c} \varphi^{c}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

\diamond We can also write:

$$
D_{\mu} \varphi=\left(D_{\mu}^{c} e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}\right) \star\left(\varphi^{c} e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}\right)
$$

\diamond As $F_{\mu \nu}^{c}$ is the standard $\theta^{\mu \nu}=0$ curvature, gauge field is that of commutative space-time and transforms covariantly under gauge transformations. We can use it to construct the Hamiltonian.

Gauge theory on moyal space-time...

\diamond The interaction Hamiltonian density for pure gauge fields is:

$$
\mathcal{H}_{I \theta}^{G}=\mathcal{H}_{I 0}^{G} .
$$

Gauge theory on moyal space-time...

\diamond The interaction Hamiltonian density for pure gauge fields is:

$$
\mathcal{H}_{I \theta}^{G}=\mathcal{H}_{I 0}^{G} .
$$

\diamond But when we have both matter and gauge fields the interaction Hamiltonian density:

$$
\mathcal{H}_{I \theta}=\mathcal{H}_{I \theta}^{M, G}+\mathcal{H}_{I \theta}^{G}
$$

Gauge theory on moyal space-time...

\diamond The interaction Hamiltonian density for pure gauge fields is:

$$
\mathcal{H}_{I \theta}^{G}=\mathcal{H}_{I 0}^{G} .
$$

\diamond But when we have both matter and gauge fields the interaction Hamiltonian density:

$$
\mathcal{H}_{I \theta}=\mathcal{H}_{I \theta}^{M, G}+\mathcal{H}_{I \theta}^{G}
$$

\diamond where

$$
\mathcal{H}_{I \theta}^{M, G}=\mathcal{H}_{I 0}^{M, G} e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

Gauge theory on moyal space-time...

$\diamond \ln Q E D_{\theta}$, we have $\mathcal{H}_{I \theta}^{G}=0$.

$$
S_{\theta}^{Q E D}=S_{0}^{Q E D} .
$$

Gauge theory on moyal space-time...

$\diamond \ln Q E D_{\theta}$, we have $\mathcal{H}_{I \theta}^{G}=0$.

$$
S_{\theta}^{Q E D}=S_{0}^{Q E D}
$$

$\diamond \ln Q C D_{\theta}$, we have $\mathcal{H}_{I \theta}^{S U(3)}=\mathcal{H}_{I 0}^{S U(3)} \neq 0$, so that

$$
S_{\theta}^{M, S U(3)} \neq S_{0}^{M, S U(3)}
$$

Gauge theory on moyal space-time...

$\diamond \ln Q E D_{\theta}$, we have $\mathcal{H}_{I \theta}^{G}=0$.

$$
S_{\theta}^{Q E D}=S_{0}^{Q E D}
$$

$\diamond \ln Q C D_{\theta}$, we have $\mathcal{H}_{I \theta}^{S U(3)}=\mathcal{H}_{I 0}^{S U(3)} \neq 0$, so that

$$
S_{\theta}^{M, S U(3)} \neq S_{0}^{M, S U(3)}
$$

\diamond Lastly we look for Standard model ${ }_{\theta}$ with spontaneous symmetry breakdown.

Higgs mechanism

\diamond We start with Higgs potential

$$
\begin{aligned}
V(\phi) & =\lambda\left(\phi^{\dagger} * \phi-a^{2}\right)_{*}^{2} \\
& =\lambda\left(\phi_{c}^{\dagger} \phi_{c}-a^{2}\right) e^{\frac{1}{2}} \overleftarrow{\partial} \wedge P
\end{aligned}
$$

Higgs mechanism

\diamond We start with Higgs potential

$$
\begin{aligned}
V(\phi) & =\lambda\left(\phi^{\dagger} * \phi-a^{2}\right)_{*}^{2} \\
& =\lambda\left(\phi_{c}^{\dagger} \phi_{c}-a^{2}\right) e^{\frac{1}{2}} \overleftarrow{\partial} \wedge P
\end{aligned}
$$

\diamond We assume the breaking $G \longrightarrow H$. In vacuum

$$
\begin{aligned}
\left\langle\phi_{c}\right\rangle & =\phi^{0}, \phi^{0 \dagger} \phi^{0}=a^{2}, \\
h \phi^{0} & =\phi^{0}, h \in H
\end{aligned}
$$

Higgs mechanism

\diamond We start with Higgs potential

$$
\begin{aligned}
V(\phi) & =\lambda\left(\phi^{\dagger} * \phi-a^{2}\right)_{*}^{2} \\
& =\lambda\left(\phi_{c}^{\dagger} \phi_{c}-a^{2}\right) e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
\end{aligned}
$$

\diamond We assume the breaking $G \longrightarrow H$. In vacuum

$$
\begin{align*}
\left\langle\phi_{c}\right\rangle & =\phi^{0}, \phi^{0 \dagger} \phi^{0}=a^{2} \tag{36}\\
h \phi^{0} & =\phi^{0}, h \in H
\end{align*}
$$

\diamond The vacuum manifold is

$$
\phi=g \phi^{0}, g \in G, \text { and }(g h) \phi^{0}=g \phi^{0}
$$

Mass of the gauge boson

\diamond The gauge field acquires mass and is given by the term:

$$
M=\left(D_{\mu} \phi\right)^{\dagger} *\left(D^{\mu} \phi\right)=\left[\left(D_{\mu}^{c} \phi_{c}\right)^{\dagger}\left(D^{\mu c} \phi_{c}\right)\right] e^{\frac{1}{2}} \overleftarrow{\partial} \wedge P
$$

Mass of the gauge boson

\diamond The gauge field acquires mass and is given by the term:

$$
M=\left(D_{\mu} \phi\right)^{\dagger} *\left(D^{\mu} \phi\right)=\left[\left(D_{\mu}^{c} \phi_{c}\right)^{\dagger}\left(D^{\mu c} \phi_{c}\right)\right] e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

\diamond If $V(\alpha), S(i)$ are basis of orthonormal generators of Lie algebra G of G, then:

$$
V(\alpha) \phi^{0}=0
$$

Mass of the gauge boson

\diamond The gauge field acquires mass and is given by the term:

$$
M=\left(D_{\mu} \phi\right)^{\dagger} *\left(D^{\mu} \phi\right)=\left[\left(D_{\mu}^{c} \phi_{c}\right)^{\dagger}\left(D^{\mu c} \phi_{c}\right)\right] e^{\frac{1}{2} \overleftarrow{\partial} \wedge P}
$$

\diamond If $V(\alpha), S(i)$ are basis of orthonormal generators of Lie algebra G of G, then:

$$
V(\alpha) \phi^{0}=0
$$

\diamond If a gauge transformation is performed from $A_{\mu}^{c} \rightarrow B_{\mu}^{c}$ where $B_{\mu}^{c}=g^{\dagger} D_{\mu}^{c} g$, then

$$
M=\phi^{c \dagger}{ }_{\alpha}\left(B_{\mu}^{c \dagger} B^{\mu c}\right)_{\alpha \beta} \phi_{\beta}^{c}
$$

Mass of the gauge boson

\diamond As usual we write

$$
B_{\mu}^{c}=B_{\mu}^{c \alpha} V_{\alpha}+B_{\mu}^{c i} S_{i}
$$

Then we get:

$$
M=\left(D_{\mu}^{c} \phi^{c}\right)^{\dagger}\left(D^{\mu c} \phi^{c}\right)=\phi^{0 \dagger} S_{i} B_{\mu}^{i} B^{\mu j} S_{j} \phi^{0}+\cdots
$$

Mass of the gauge boson

\diamond As usual we write

$$
B_{\mu}^{c}=B_{\mu}^{c \alpha} V_{\alpha}+B_{\mu}^{c i} S_{i}
$$

Then we get:

$$
M=\left(D_{\mu}^{c} \phi^{c}\right)^{\dagger}\left(D^{\mu c} \phi^{c}\right)=\phi^{0 \dagger} S_{i} B_{\mu}^{i} B^{\mu j} S_{j} \phi^{0}+\cdots
$$

\diamond This shows gauge fields in the direction of V_{α} dont acquire mass and only those in the direction of S_{i} do.

Mass of the gauge boson

\diamond As usual we write

$$
B_{\mu}^{c}=B_{\mu}^{c \alpha} V_{\alpha}+B_{\mu}^{c i} S_{i}
$$

Then we get:

$$
M=\left(D_{\mu}^{c} \phi^{c}\right)^{\dagger}\left(D^{\mu c} \phi^{c}\right)=\phi^{0 \dagger} S_{i} B_{\mu}^{i} B^{\mu j} S_{j} \phi^{0}+\cdots
$$

\diamond This shows gauge fields in the direction of V_{α} dont acquire mass and only those in the direction of S_{i} do.
$\diamond B_{\mu}^{c}$ is the gauge transformation of D_{μ}^{c}. This preserves the pure gauge Hamiltonian $H_{I \theta}=H_{I 0}$.

Mass of the gauge boson

\diamond After gauge fixing the Hamiltonian with the mass term is:

$$
\left.H_{0}=\int\left\{\partial \wedge B^{c}\right)^{2}+\left(\partial_{0} B^{i}-\partial^{i} B_{0}\right)^{2}+\cdots+M\right\}
$$

Mass of the gauge boson

\diamond After gauge fixing the Hamiltonian with the mass term is:

$$
\left.H_{0}=\int\left\{\partial \wedge B^{c}\right)^{2}+\left(\partial_{0} B^{i}-\partial^{i} B_{0}\right)^{2}+\cdots+M\right\}
$$

\diamond Fo completeness we should ensure H_{0} as a quantum operator on single particle states of definite momentum.

Mass of the gauge boson

\diamond After gauge fixing the Hamiltonian with the mass term is:

$$
\left.H_{0}=\int\left\{\partial \wedge B^{c}\right)^{2}+\left(\partial_{0} B^{i}-\partial^{i} B_{0}\right)^{2}+\cdots+M\right\}
$$

\diamond Fo completeness we should ensure H_{0} as a quantum operator on single particle states of definite momentum.
\diamond Now M can be expressed as:

$$
\int d^{3} x M=\int d^{3} x M_{0}\left(e^{\frac{1}{2} \overleftarrow{\delta_{0}} \theta^{0 i} P_{i}}\right)\left(e^{\frac{1}{2} \overleftarrow{\partial_{i}} \theta^{0 i} P_{0}}\right)
$$

Mass of the gauge boson

\diamond The last term in the exponential gives 1 and hence we are left with:

$$
\int d^{3} x M=\int d^{3} x M_{0}\left(e^{\frac{1}{2} \overleftarrow{\partial_{0}} \theta^{0 i} P_{i}}\right)
$$

Mass of the gauge boson

\diamond The last term in the exponential gives 1 and hence we are left with:

$$
\int d^{3} x M=\int d^{3} x M_{0}\left(e^{\frac{1}{2} \overleftarrow{\partial_{0}} \theta^{0 i} P_{i}}\right)
$$

\diamond Hence For $\theta_{0 i}=0$ we have $H_{\theta 0}=H_{00}$.

Mass of the gauge boson

\diamond The last term in the exponential gives 1 and hence we are left with:

$$
\int d^{3} x M=\int d^{3} x M_{0}\left(e^{\frac{1}{2} \overleftarrow{\partial_{0}} \theta^{0 i} P_{i}}\right)
$$

\diamond Hence For $\theta_{0 i}=0$ we have $H_{\theta 0}=H_{00}$.
\diamond But there will be additional interaction terms coming from $H_{I \theta}^{M, G} \neq H_{I 0}^{M, G}$.

scattering

\diamond Define: $x=E / m$ and $t=m^{2}(\vec{T} \cdot \hat{n}), T^{i}=\theta_{i j} \epsilon^{i j k}$ and \hat{n} the unit vector normal to the plane $\hat{p}_{i} \Leftrightarrow \hat{p}_{f}$

$$
|\mathcal{F}|^{2}=\left|\mathcal{T}\left(t, \Theta_{M}, x\right)\right|^{2} /|\mathcal{T}(0, \Pi / 4, x)|^{2}
$$

and we plot $|\mathcal{F}|^{2} \Leftrightarrow \Theta_{M}$.

scattering

\diamond Define: $x=E / m$ and $t=m^{2}(\vec{T} \cdot \hat{n}), T^{i}=\theta_{i j} \epsilon^{i j k}$ and \hat{n} the unit vector normal to the plane $\hat{p}_{i} \Leftrightarrow \hat{p}_{f}$

$$
|\mathcal{F}|^{2}=\left|\mathcal{T}\left(t, \Theta_{M}, x\right)\right|^{2} /|\mathcal{T}(0, \Pi / 4, x)|^{2}
$$

and we plot $|\mathcal{F}|^{2} \Leftrightarrow \Theta_{M}$.

scattering

\diamond Define: $x=E / m$ and $t=m^{2}(\vec{T} \cdot \hat{n}), T^{i}=\theta_{i j} \epsilon^{i j k}$ and \hat{n} the unit vector normal to the plane $\hat{p}_{i} \Leftrightarrow \hat{p}_{f}$

$$
|\mathcal{F}|^{2}=\left|\mathcal{T}\left(t, \Theta_{M}, x\right)\right|^{2} /|\mathcal{T}(0, \Pi / 4, x)|^{2}
$$

and we plot $|\mathcal{F}|^{2} \Leftrightarrow \Theta_{M}$.
\diamond We see that NC amplitude does not vanish for $\Theta_{M}=\pi / 2$.

