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Motivations.....

⋄ Quantum gravity -at Planck length - folklore- must have
- noncommutative geometric structure - limit of
classical gravity - emerge - commutative geometry of
spacetime we know. Just like:

lim
~−→0

Q.Physics = Cl.Physics
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⋄ Quantum gravity -at Planck length - folklore- must have
- noncommutative geometric structure - limit of
classical gravity - emerge - commutative geometry of
spacetime we know. Just like:

lim
~−→0

Q.Physics = Cl.Physics

⋄ Expectation:

lim
Planck length−→0

Non commutative geometry

=
Commutative Geometry
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Motivations.....

⋄ Any attempt to localise events to lengths close to
Plancklength will bring in enormous energy and
eventually lead to blackholes being created. This will
distort the local geometry so much that quantum
effects would be overwhelming.
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Motivations.....

⋄ Any attempt to localise events to lengths close to
Plancklength will bring in enormous energy and
eventually lead to blackholes being created. This will
distort the local geometry so much that quantum
effects would be overwhelming.

⋄ The above arguments have been posed in two
independent places. (1) Sergio Doplicher’s paper.
(2)Podles lectures on quantum groups - where it is
mentioned that Nahm has posed the questions and the
need to go beyond conventional ideas of geometries.
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Quote.....

⋄ It seems difficulties in defining geometry at
infinitesimal distances were anticipated much earliar.
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Quote.....

⋄ It seems difficulties in defining geometry at
infinitesimal distances were anticipated much earliar.

⋄ ....it seems that empirical notions on which the metrical
determinations of space are founded, the notion of a
solid body and a ray of light cease to be valid for the
infinitely small. We are therefore quite at liberty to
suppose that the metric relations of space in the
infinitely small do not conform to hypotheses of
geometry; and we ought in fact to suppose it, if we can
thereby obtain a simpler explanation of phenomena....

⋄ The above is from “On the hypotheses which lie at the
bases of geometry”, Bernhard Riemann, 1854 (from
the translation by W K Clifford).
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QFT in Moyal spacetimes...

⋄ Moyal spacetimes are defined by:

[ x̂µ, x̂ν ] = iθµνI
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QFT in Moyal spacetimes...

⋄ Moyal spacetimes are defined by:

[ x̂µ, x̂ν ] = iθµνI

⋄ This can be understood by the introduction of star
product rule in the algebra of functions on R4. The
multiplication map of algebra of functions ( on Moyal
plane) Aθ(R

4) is f ∗ g = mθ(f ⊗ g) = m0(F θ(f ⊗ g))

⋄ where

F θ = e−
i
2
(−i∂µ)Θµν⊗(−i∂ν)

⋄ In commutative spacetime we have pointwise
multiplication.
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QFT in Moyal....

⋄ Consider the scalar field theory on the GM plane with
the Lagrangian (density)

L∗ =
1

2
∂µΦ ∗ ∂µΦ−

1

2
m2Φ ∗ Φ−

λ

4!
Φ ∗ Φ ∗ Φ ∗ Φ ,
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QFT in Moyal....

⋄ Consider the scalar field theory on the GM plane with
the Lagrangian (density)

L∗ =
1

2
∂µΦ ∗ ∂µΦ−

1

2
m2Φ ∗ Φ−

λ

4!
Φ ∗ Φ ∗ Φ ∗ Φ ,

⋄ Poincare symmetry is lost. Hence the Wigner’s
classification for particles with mass (or massless) and
spin(or helicity) cannot be used.

⋄ Singular θ → 0 limit makes the theory unsuitable as an
effective theory.
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Gauge theories...

⋄ Conventional Gauge transformations will not close with
the new multiplication map given as star product. For
this one introduces star gauge transformations: Under
star gauge transformation
Aµ(x) −→ g(x) ∗ Aµ(x) ∗ g†(x) − g(x) ∗ ∂µg(x)†.
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Gauge theories...

⋄ Conventional Gauge transformations will not close with
the new multiplication map given as star product. For
this one introduces star gauge transformations: Under
star gauge transformation
Aµ(x) −→ g(x) ∗ Aµ(x) ∗ g†(x) − g(x) ∗ ∂µg(x)†.

⋄ The NC field strength
Fµν = ∂µAν − ∂νAµ − i(Aµ ∗ Aν − Aν ∗ Aµ)
transforms covariantly viz.,

Fµν −→ g(x) ∗ Fµν ∗ g†(x)

under the star gauge transformation.

⋄ Since gauge transformations are introduced in this way
there is no way to get gauge groups other than U(N).
Infact there is no standard model unless we extend.
Charges of U(1)EM are also rigidly fixed.
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Gauge theories...

⋄ Inspite of the above difficulties lot of papers have been
written by expanding the star products and keeping to
O(θ) terms alone.

9



Gauge theories...

⋄ Inspite of the above difficulties lot of papers have been
written by expanding the star products and keeping to
O(θ) terms alone.

⋄ For example the field strength Fµν is expanded as:

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]

−
1

2
θργ(∂ρAµ∂γAν − ∂ρAν∂γAµ) + O(θ2)

9



Gauge theories...

⋄ Inspite of the above difficulties lot of papers have been
written by expanding the star products and keeping to
O(θ) terms alone.

⋄ For example the field strength Fµν is expanded as:

Fµν = ∂µAν − ∂νAµ − i[Aµ, Aν ]

−
1

2
θργ(∂ρAµ∂γAν − ∂ρAν∂γAµ) + O(θ2)

⋄ Phenomenological consequences have been worked
out. We will not elaborate more on this approach.
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New developements...

⋄ The assumption that noncommutativity breaks in
general Lorentz invariance is not completely correct.
We will show Poincare group algebra acts on the
Aθ(R

4) Moyal plane if the coproduct is deformed. This is
interesting and makes the situation better because
while considering field theories on NC space one uses
the representation theory of Poincare group without
any justification. This will happen for space-space as
well as space-time noncommutativityJHEP 0410, 72, 0411, 68. 10
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New developements...

⋄ The assumption that noncommutativity breaks in
general Lorentz invariance is not completely correct.
We will show Poincare group algebra acts on the
Aθ(R

4) Moyal plane if the coproduct is deformed. This is
interesting and makes the situation better because
while considering field theories on NC space one uses
the representation theory of Poincare group without
any justification. This will happen for space-space as
well as space-time noncommutativityJHEP 0410, 72, 0411, 68.

⋄ This leads to some interesting results like violation of
exclusion principle, pauli-pairs, no uv-ir mixing,.... etc

⋄ This can help in putting experimental bounds on
noncommutativity parameter.
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poincare covariance....

⋄ If V is a vectorspace and G is a group, ρ(g) a
representation then we have the action of the group
as: V −→ ρ(g)V .
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⋄ If V is a vectorspace and G is a group, ρ(g) a
representation then we have the action of the group
as: V −→ ρ(g)V .

⋄ The group algebra G also acts on V . Its action is

v −→

∫

dg α(g)ρ(g) v

⋄ On the tensor product space V ⊗ V the action usually
is:

v1 ⊗ v2 −→

∫

dg α(g)ρ(g)v1 ⊗ ρ(g)v2

⋄ In the theory of Hopf algebra the action of G is
obtained using the coproduct which is homomorphism
from G → G ⊗ G
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poincare covariance....

⋄ If ∆(g) is the coproduct then,

∆

(
∫

dg α(g) g)

)

=

∫

dg α(g)∆(g)

⋄We have the action of the group on the tensor product
of vector spaces as: V ⊗ V −→ (ρ⊗ ρ) ∆ (V ⊗ V )

⋄ Any choice of ∆ consistent with the Hopf algebraic
conditions would define an action G on V ⊗ V .

⋄ The choices of coproducts are not all equivalent. For
example the IRR’s that occur in ρ⊗ ρ and the CG
coefficients depend on ∆. This is well known in
quantum groups.
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poincare covariance....

⋄ If V is in addition an algebra then we have a
multiplication map

m : V ⊗ V → V and α⊗ β → m(α⊗ β)

⋄We have a compatibility condition:

m [(ρ⊗ ρ) ∆(g) (α⊗ β)] = ρ(g) m(α⊗ β)

⋄ The above can be shown as commutative diagram!

α   β
∆

α   β α   β( )

ρ ρ  ∆ ( ) α β

ρ( )m

m

m

m

g

∆
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poincare covariance....

⋄ If V is in addition an algebra then we have a
multiplication map

m : V ⊗ V → V and α⊗ β → m(α⊗ β)

⋄We have a compatibility condition:

m [(ρ⊗ ρ) ∆(g) (α⊗ β)] = ρ(g) m(α⊗ β)

⋄ If such a coproduct ∆ exists then G acts as an
automorphism on V .
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poincare covariance....

⋄ Indeed such a twisted coproductDrinfeld for Moyal space
is:

∆θ(g) = F̂−1
θ (g ⊗ g)F̂θ

where F̂θ = e−
1

2
Pµ⊗θµν Pν , Pµ is the generator of

translations.
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the multiplication map.

mθ(ρ⊗ρ)∆θ(g)(α⊗β) = m0

[

Fθ(F
−1
θ ρ(g)⊗ ρ(g) Fθ)α⊗ β

]

which is ρ(g) (α ∗θ β).

14
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⋄ Indeed such a twisted coproductDrinfeld for Moyal space
is:

∆θ(g) = F̂−1
θ (g ⊗ g)F̂θ

where F̂θ = e−
1

2
Pµ⊗θµν Pν , Pµ is the generator of

translations.

⋄ It is easy to check that the coproduct is compatible with
the multiplication map.

mθ(ρ⊗ρ)∆θ(g)(α⊗β) = m0

[

Fθ(F
−1
θ ρ(g)⊗ ρ(g) Fθ)α⊗ β

]

which is ρ(g) (α ∗θ β).

⋄ Tensor product of Plane waves ep(x) = eip.x under
Lorentz transformations go as:

e
i
2
(Λp)µΘµν(Λq)ν e−

i
2
pµΘµνqνeΛp ⊗ eΛq
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Twisting statistics...

⋄ For θµν = 0 statistics is imposed on the two-particle
sector by working with the (a)symmetrized tensor
product A0(R

4)⊗s,a A0(R
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4).

⋄ It has for example

v ⊗s,a w =
1

2
[v ⊗ w ± w ⊗ v], v, w ∈ A0(R

4).

⋄ But the twisted coproduct does not preserve
(a)symmetrization:

∆θ(φ)(v ⊗s,a w) /∈ A0(R
4)⊗s,a A0(R

4)

⋄We are forced to twist statistics also.
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Twisting statistics...

⋄ Let τ0 be the flip map:

τ0(v ⊗ w) = w ⊗ v.

⋄ Then

τθ := F−1
θ τ0Fθ = F−2

θ τ0

commutes with ∆θ(φ).

⋄ The tensor product Aθ(R
4)⊗sθ,aθ

Aθ(R
4) with twisted

(a)symmetrization is:

v ⊗sθ,aθ
w =

1

2
[I ± τθ](v ⊗ w)

⋄ Like in standard QM, statistics is superselected and all
observables commute with τθ.
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scalar field......

⋄ If a scalar field has Fourier expansion as:

φ =

∫

Dp
(

a(p)ep + a†(p)e−p

)
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scalar field......

⋄ If a scalar field has Fourier expansion as:

φ =

∫

Dp
(

a(p)ep + a†(p)e−p

)

⋄ then

ρ(Λ)φ̂(p) = φ̂(Λ−1 p), ρ(eiP.aφ̂)(p) = eip.aφ̂(p)

⋄ But on φ ⊗ χ, twisted Lorentz transformations act as:

∆θ(Λ)(φ⊗ χ)(p, q) = Fθ(Λ
−1p,Λ−1q)F−1

θ (p, q)φ(Λ−1p)χ(Λ−1q)

⋄ where Fθ(p, q) = e−
i
2
p · θ · q.
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exclusion principle......

⋄We will now show that for the scalar field φ we have
new deformed operator relations:

a(p)a(q) = η F−2
θ (q, p)a(q)a(p)

and
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exclusion principle......

⋄We will now show that for the scalar field φ we have
new deformed operator relations:

⋄

a(p)a†(q) = η F−2
θ (q, p)a†(q)a(p) + 2p0δ(p − q)

⋄ If we suppose

a(p)a(q) = Gθ(p, q)a(q)a(p)

then

U(Λ) Gθ(p, q) U(Λ)−1 = Gθ(p, q)

18



new exclusion principle......

⋄ Using the transformations of a(p)a(q) = (a⊗ a)(p, q)
we get:
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new exclusion principle......

⋄ Using the transformations of a(p)a(q) = (a⊗ a)(p, q)
we get:

⋄

◦ Gθ(Λ
−1p,Λ−1q)F 2

θ (Λ−1q,Λ−1p) = Gθ(p, q)F
2
θ (q, p)

⋄ The solution of the ◦ is:

Gθ(p, q) = η F−2
θ (q, p)

⋄ The above was known as Faddeev - Zamolodchikov
algebra in 2D integrable models. For
fermions(bosons), in the limit of θ = 0, we have
η = − 1(+1).
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new exclusion principle......

⋄ A single particle state is given by

|α〉 =
∫

Dpα(p) a†p |0〉. We can ask whether two
particle symmetric state

|α, α〉 =

∫

DpDqα(p)α(q)a†pa
†
q |0〉

is permitted - violating pauli statistics.
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Dpα(p) a†p |0〉. We can ask whether two
particle symmetric state

|α, α〉 =

∫

DpDqα(p)α(q)a†pa
†
q |0〉

is permitted - violating pauli statistics.

⋄ And the answer- its norm is:
∫

Dp Dq (ᾱ(p)α(p)ᾱ(q)α(q) [1− cos(p.Θ.q)]

and is nonzero!.

⋄ pauli pairs- we can also show even more intriguing
features like two particle states of certain types are not
allowed. These are generalisations of two particle
symmetric states for fermions bal,giorgio,trg,vaidya.

20



uv/ir mixing,....

⋄We shall briefly take up issues like uv/ir mixing. Earliar
quantisations were done by canonical commutation
rules sacrificing poincare covariance. Now it is clear
that to maintain covariance the operator relations have
to be deformed.
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uv/ir mixing,....

⋄We shall briefly take up issues like uv/ir mixing. Earliar
quantisations were done by canonical commutation
rules sacrificing poincare covariance. Now it is clear
that to maintain covariance the operator relations have
to be deformed.

⋄ Given the single particle annihilation operators ap we
can define operators cp obeying standard relations.

ap = cp e
i
2
pµΘµν Pν

Here Pµ is the translations generator.

Pµ =

∫

dµ(p) pµ a†(p)a(p)

21



uv/ir mixing,...

⋄ The interaction Hamiltonian is:

HI(t) = λ

∫

dx : φn
∗ :
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uv/ir mixing,...

⋄ The interaction Hamiltonian is:

HI(t) = λ

∫

dx : φn
∗ :

⋄ Hence the S-matrix is given by:

Sθ = T ei
R

dt HI(t)
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uv/ir mixing,...

⋄ The interaction Hamiltonian is:

HI(t) = λ

∫

dx : φn
∗ :

⋄ Hence the S-matrix is given by:

Sθ = T ei
R

dt HI(t)

⋄ to order λ we will have

: φ ∗ φ ∗ φ · · · φ : = : a(p1)a(p2)...a(pn) :

which simplifies to

: c(p1)c(p2)...c(pn) : ep1+p2+···pn
(x) e

i
2
(p1+p2+···pn)◦Θ◦P

22



uv/ir mixing,...

⋄ And using 4-momentum conservation we get

S
(1)
θ = S

(1)
0

23



uv/ir mixing,...

⋄ And using 4-momentum conservation we get

S
(1)
θ = S

(1)
0

⋄ This can be extended to all orders using 4-momentum
conservation and partial integrations to prove that
Sθ = S0. Hence there will not be any uv/ir mixing
bal,pinzul,babar.
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uv/ir mixing,...

⋄ And using 4-momentum conservation we get

S
(1)
θ = S

(1)
0

⋄ This can be extended to all orders using 4-momentum
conservation and partial integrations to prove that
Sθ = S0. Hence there will not be any uv/ir mixing
bal,pinzul,babar.

⋄ But the scattering amplitudes will depend on θ as the in
and out states are changed.

⋄ There is an easier way to understand the above
features as well as introduce diffeos and gauge
symmetry using a novel commutative algebraic
substructure inside Aθ(R

4).

23



The commutative algebra A0(R
4)

⋄ Let us see how we can define diffeomorphisms and
gauge symmetries in this framework. But the
coproduct again should be changed to be compatible
with multiplication.Wess etal, But we will adopt a novel way.
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⋄ Let us see how we can define diffeomorphisms and
gauge symmetries in this framework. But the
coproduct again should be changed to be compatible
with multiplication.Wess etal, But we will adopt a novel way.

⋄ Consider xc
µ =

xL
µ + xR

µ

2

⋄ where xL
µ α = xµ ∗ α and xR

µ α = α ∗ xµ.
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The commutative algebra A0(R
4)

⋄ Let us see how we can define diffeomorphisms and
gauge symmetries in this framework. But the
coproduct again should be changed to be compatible
with multiplication.Wess etal, But we will adopt a novel way.

⋄ Consider xc
µ =

xL
µ + xR

µ

2

⋄ where xL
µ α = xµ ∗ α and xR

µ α = α ∗ xµ.

⋄ It is easy to see
[

xc
µ, xc

ν

]

= 0.

This simply means xc
µ form a basis for commutative

algebra A0(R
4). One can define Poincare group of

generators using xc
µ as

Mµν = xc
µ pν − xc

ν pµ , pµ = − i∂µ

24



Diffeomorphism and gauge invariance

⋄We get modified Leibnitz rule:

Mµν(α ∗ β) = Mµνα ∗ β + α ∗Mµνβ

−
1

2
[(p.θ)µα ∗ pνβ − (pνα ∗ (p.θ)µβ − µ↔ ν]

This is exactly same as what we get from twisted
coproduct!
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Diffeomorphism and gauge invariance

⋄We get modified Leibnitz rule:

Mµν(α ∗ β) = Mµνα ∗ β + α ∗Mµνβ

−
1

2
[(p.θ)µα ∗ pνβ − (pνα ∗ (p.θ)µβ − µ↔ ν]

This is exactly same as what we get from twisted
coproduct!

⋄We can also write:

xµc = xµL +
1

2
θµνpν .
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Diffeomorphism and gauge invariance

⋄We get modified Leibnitz rule:

Mµν(α ∗ β) = Mµνα ∗ β + α ∗Mµνβ

−
1

2
[(p.θ)µα ∗ pνβ − (pνα ∗ (p.θ)µβ − µ↔ ν]

This is exactly same as what we get from twisted
coproduct!

⋄We can also write:

xµc = xµL +
1

2
θµνpν .

⋄Mµν is a particular vector field. This can be extended
to general vector fields v = vµ(xc)∂µ.
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Diffeomorphism and gauge invariance

⋄We get modified Leibnitz rule:

Mµν(α ∗ β) = Mµνα ∗ β + α ∗Mµνβ

−
1

2
[(p.θ)µα ∗ pνβ − (pνα ∗ (p.θ)µβ − µ↔ ν]

This is exactly same as what we get from twisted
coproduct!

⋄We can also write:

xµc = xµL +
1

2
θµνpν .

⋄Mµν is a particular vector field. This can be extended
to general vector fields v = vµ(xc)∂µ.

⋄ These generate the diffeomorphisms on the Moyal
spacetime.

25



Diffeomorphism and gauge invariance

⋄ Consider covariant derivative Dµ = ∂µ + Γµ + ωµ. If
we assume the framefields ea

µ are dependent only on
xc then pure gravity without matter can be treated as in
commutative spacetimes.

26



Diffeomorphism and gauge invariance

⋄ Consider covariant derivative Dµ = ∂µ + Γµ + ωµ. If
we assume the framefields ea

µ are dependent only on
xc then pure gravity without matter can be treated as in
commutative spacetimes.

⋄ Gauge fields Aλ transform as one-forms under
diffeomorphisms for θµν = 0. For θµν 6= 0, the vector
fields vµ generating diffeomorphisms depend on xc.

26



Diffeomorphism and gauge invariance

⋄ Consider covariant derivative Dµ = ∂µ + Γµ + ωµ. If
we assume the framefields ea

µ are dependent only on
xc then pure gravity without matter can be treated as in
commutative spacetimes.

⋄ Gauge fields Aλ transform as one-forms under
diffeomorphisms for θµν = 0. For θµν 6= 0, the vector
fields vµ generating diffeomorphisms depend on xc.

⋄ If a diffeomorphism acts on Aλ in a conventional way
and Aλ, δAλ are to depend on just one combination of
noncommutative coordinates, then Aλ can depend only
on xc.

26



Diffeomorphism and gauge invariance

⋄ Twisted coproducts for diffeos are needed to maintain
them as symmetries in gravity. But with gravity and
gauge fields present, the group of importance is not
just D0(R

4), but its semi-direct product G ⋉D0(R
4).
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Diffeomorphism and gauge invariance

⋄ Twisted coproducts for diffeos are needed to maintain
them as symmetries in gravity. But with gravity and
gauge fields present, the group of importance is not
just D0(R

4), but its semi-direct product G ⋉D0(R
4).

⋄ it is natural to keep G ⋉D0(R
4) for θµν 6= 0. D0(R

4)
perform diffeomorphisms. We require elements of G
are constructed from the elements of the algebra
generated by xc and the group G is independent of θµν .

⋄ The conclusion is that pure gravity and gauge sectors
are unaffected by noncommutativity.

27



Diffeomorphism and gauge invariance

⋄ In the standard approach to noncommutative gauge
groups covariant derivatives act with the ∗ -product it is
possible to have only particular representations of
U(N) gauge groups or use enveloping algebras. There
is no such limitation now where the gauge group.
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Diffeomorphism and gauge invariance

⋄ In the standard approach to noncommutative gauge
groups covariant derivatives act with the ∗ -product it is
possible to have only particular representations of
U(N) gauge groups or use enveloping algebras. There
is no such limitation now where the gauge group.

⋄ In quantum Hall effect, the algebra of observables is
Aθ(R

2)⊗Aθ(R
2). Here too covariant derivatives of the

U(1) electromagnetism do act in the same way and not
with a ∗ product.

⋄ In Wess et al.,the covariant derivative D∗
µ acts with a ∗

-product. Hence:

D∗
µ = D∗

µe−
i
2
ad
←−
∂ λθλρ

−→
∂ ρ ;D∗

µ ∗ α = D∗
µα

28



Gauge group on matter fields

⋄ Fields transform non-trivially under G or “global” group
G are modules over Aθ(R

4). If a d-dimensional
representation of G is involved, they can be elements
of Aθ(R

4)⊗ C
d.
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consistently only if the gauge group also has a twisted
coproduct.
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Gauge group on matter fields

⋄ Fields transform non-trivially under G or “global” group
G are modules over Aθ(R

4). If a d-dimensional
representation of G is involved, they can be elements
of Aθ(R

4)⊗ C
d.

⋄We need the action of gauge transformations on these
modules compatibly with the ∗-product.

⋄We should form gauge scalars out of elements of
Aθ(R

4)⊗ C
d and their adjoints. We can do these

consistently only if the gauge group also has a twisted
coproduct.

⋄ The twisted coproduct on G is,

∆θ(g(xc) = F−1
θ [g(xc)⊗ g(xc)]Fθ,

and is compatible with the ∗-multiplication.

29



Gauge group on matter fields

⋄ This twisted coproduct ∆θ(g(x̂c) preserves the
semi-direct product structure G ⋉D0(R

4).
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⋄ This twisted coproduct ∆θ(g(x̂c) preserves the
semi-direct product structure G ⋉D0(R

4).

⋄ Next we need covariant derivatives consistently
defined to complete the program.
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Gauge group on matter fields

⋄ This twisted coproduct ∆θ(g(x̂c) preserves the
semi-direct product structure G ⋉D0(R

4).

⋄ Next we need covariant derivatives consistently
defined to complete the program.

⋄We already saw the twisted commutation relations:

a(p)a(q) = eip∧qa(q)a(p),

a(p)a†(q) = e−ip∧qa†(q)a(p) + 2p0δ
(3)(p− q), 30



Dressing transformation..

⋄ Now a(p), a†(p) can be realized in terms of untwisted

Fock space operators c(p), c†(p) by the “dressing
transformation" grosse,zamolodchikov,faddeev

a(p) = c(p)e−
i
2
p∧P , a†(p) = c†(q)e

i
2
p∧P ,where

Pµ =

∫

dµ(q)qµ[a†(q)a(q)] = total momentum operator.
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Dressing transformation..

⋄ Now a(p), a†(p) can be realized in terms of untwisted

Fock space operators c(p), c†(p) by the “dressing
transformation" grosse,zamolodchikov,faddeev

a(p) = c(p)e−
i
2
p∧P , a†(p) = c†(q)e

i
2
p∧P ,where

Pµ =

∫

dµ(q)qµ[a†(q)a(q)] = total momentum operator.

⋄ Then φ(x) may be written in terms of commutative
fields φc as

φ(x) = φce
1

2

←−
∂ ∧P (x) .
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Dressing transformation..

⋄ Now a(p), a†(p) can be realized in terms of untwisted

Fock space operators c(p), c†(p) by the “dressing
transformation" grosse,zamolodchikov,faddeev

a(p) = c(p)e−
i
2
p∧P , a†(p) = c†(q)e

i
2
p∧P ,where

Pµ =

∫

dµ(q)qµ[a†(q)a(q)] = total momentum operator.

⋄ Then φ(x) may be written in terms of commutative
fields φc as

φ(x) = φce
1

2

←−
∂ ∧P (x) .

⋄ If φ1, φ2, · · · φn are quantum fields, φi(x) = φc
ie

1

2

←−
∂ ∧P (x),

31



Covariant derivatives,...

⋄ then

(φ1 ∗ φ2 ∗ · · ·φn)(x) = (φc
1φ

c
2 · · ·φ

c
n)e

1

2

←−
∂ ∧P (x)

32



Covariant derivatives,...

⋄ then

(φ1 ∗ φ2 ∗ · · ·φn)(x) = (φc
1φ

c
2 · · ·φ

c
n)e

1

2

←−
∂ ∧P (x)

⋄ For example Interaction Hamiltonian density is:

HIθ = HI0 e
1

2

←−
∂ ∧P
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Covariant derivatives,...

⋄ then

(φ1 ∗ φ2 ∗ · · ·φn)(x) = (φc
1φ

c
2 · · ·φ

c
n)e

1

2

←−
∂ ∧P (x)

⋄ For example Interaction Hamiltonian density is:

HIθ = HI0 e
1

2

←−
∂ ∧P

⋄ The covariant derivative should transport consistently
with the statistics and gauge transformations and the
natural choice is:

Dµφ = ((Dµ)cφc)e
1

2

←−
∂ ∧P

32



Covariant derivatives,...

⋄ It is easy to check:

[Dµ, Dν ]ϕ =
(

[Dc
µ, Dc

ν ]ϕc
)

e
1

2

←−
∂ ∧P =

(

F c
µνϕ

c
)

e
1

2

←−
∂ ∧P .
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Covariant derivatives,...

⋄ It is easy to check:

[Dµ, Dν ]ϕ =
(

[Dc
µ, Dc

ν ]ϕc
)

e
1

2

←−
∂ ∧P =

(

F c
µνϕ

c
)

e
1

2

←−
∂ ∧P .

⋄We can also write:

Dµϕ =
(

Dc
µe

1

2

←−
∂ ∧P

)

⋆
(

ϕce
1

2

←−
∂ ∧P

)

.
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Covariant derivatives,...

⋄ It is easy to check:

[Dµ, Dν ]ϕ =
(

[Dc
µ, Dc

ν ]ϕc
)

e
1

2

←−
∂ ∧P =

(

F c
µνϕ

c
)

e
1

2

←−
∂ ∧P .

⋄We can also write:

Dµϕ =
(

Dc
µe

1

2

←−
∂ ∧P

)

⋆
(

ϕce
1

2

←−
∂ ∧P

)

.

⋄ As F c
µν is the standard θµν = 0 curvature, gauge field is

that of commutative space-time and transforms
covariantly under gauge transformations. We can use
it to construct the Hamiltonian.
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Gauge theory on moyal space-time...

⋄ The interaction Hamiltonian density for pure gauge
fields is:

H
G

Iθ = H
G

I0.
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Gauge theory on moyal space-time...

⋄ The interaction Hamiltonian density for pure gauge
fields is:

H
G

Iθ = H
G

I0.

⋄ But when we have both matter and gauge fields the
interaction Hamiltonian density:

HIθ = H
M,G

Iθ +H
G

Iθ,

⋄ where

H
M,G

Iθ = H
M,G

I0 e
1

2

←−
∂ ∧P

34



Gauge theory on moyal space-time...

⋄ In QEDθ, we have H
G

Iθ = 0.

SQED
θ = SQED

0 .
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Gauge theory on moyal space-time...

⋄ In QEDθ, we have H
G

Iθ = 0.

SQED
θ = SQED

0 .

⋄ In QCDθ, we have H
SU(3)
Iθ = H

SU(3)
I0 6= 0, so that

S
M,SU(3)
θ 6= S

M,SU(3)
0 .
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Gauge theory on moyal space-time...

⋄ In QEDθ, we have H
G

Iθ = 0.

SQED
θ = SQED

0 .

⋄ In QCDθ, we have H
SU(3)
Iθ = H

SU(3)
I0 6= 0, so that

S
M,SU(3)
θ 6= S

M,SU(3)
0 .

⋄ Lastly we look for Standard modelθ with spontaneous
symmetry breakdown.

35



Higgsθ mechanism

⋄We start with Higgs potential

V (φ) = λ(φ† ∗ φ − a2)2∗

= λ(φ†
cφc − a2) e

1

2

←−
∂ ∧P

36
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h φ0 = φ0, h ∈ H
36



Higgsθ mechanism

⋄We start with Higgs potential

V (φ) = λ(φ† ∗ φ − a2)2∗

= λ(φ†
cφc − a2) e

1

2

←−
∂ ∧P

⋄We assume the breaking G −→ H. In vacuum

〈φc〉 = φ0, φ0† φ0 = a2,

h φ0 = φ0, h ∈ H

⋄ The vacuum manifold is

φ = g φ0, g ∈ G, and (gh) φ0 = g φ0

36



Mass of the gauge boson

⋄ The gauge field acquires mass and is given by the
term:

M = (Dµφ)† ∗ (Dµφ) = [(Dc
µφc)

†(Dµcφc)]e
1

2

←−
∂ ∧P

37



Mass of the gauge boson

⋄ The gauge field acquires mass and is given by the
term:

M = (Dµφ)† ∗ (Dµφ) = [(Dc
µφc)

†(Dµcφc)]e
1

2

←−
∂ ∧P

⋄ If V (α), S(i) are basis of orthonormal generators of Lie
algebra G of G, then:

V (α)φ0 = 0 37



Mass of the gauge boson

⋄ The gauge field acquires mass and is given by the
term:

M = (Dµφ)† ∗ (Dµφ) = [(Dc
µφc)

†(Dµcφc)]e
1

2

←−
∂ ∧P

⋄ If V (α), S(i) are basis of orthonormal generators of Lie
algebra G of G, then:

V (α)φ0 = 0

⋄ If a gauge transformation is performed from Ac
µ → Bc

µ

where Bc
µ = g† Dc

µ g, then

M = φc†
α(Bc

µ
†Bµc)αβφc

β

37



Mass of the gauge boson

⋄ As usual we write

Bc
µ = Bc

µ
αVα + Bc

µ
iSi

Then we get:

M = (Dc
µφc)†(Dµcφc) = φ0†SiB

i
µBµjSjφ

0 + · · ·

38
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Mass of the gauge boson

⋄ As usual we write

Bc
µ = Bc

µ
αVα + Bc

µ
iSi

Then we get:

M = (Dc
µφc)†(Dµcφc) = φ0†SiB

i
µBµjSjφ

0 + · · ·

⋄ This shows gauge fields in the direction of Vα dont
acquire mass and only those in the direction of Si do.

⋄ Bc
µ is the gauge transformation of Dc

µ. This preserves
the pure gauge Hamiltonian HIθ = HI0.

38



Mass of the gauge boson

⋄ After gauge fixing the Hamiltonian with the mass term
is:

H0 =

∫

{∂ ∧ Bc)2 + (∂0B
i − ∂iB0)

2 + · · · + M}
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Mass of the gauge boson

⋄ After gauge fixing the Hamiltonian with the mass term
is:

H0 =

∫

{∂ ∧ Bc)2 + (∂0B
i − ∂iB0)

2 + · · · + M}

⋄ Fo completeness we should ensure H0 as a quantum
operator on single particle states of definite
momentum.

⋄ Now M can be expressed as:
∫

d3x M =

∫

d3x M0

(

e
1

2

←−
∂0θ0iPi

)(

e
1

2

←−
∂i θ0iP0

)

39



Mass of the gauge boson

⋄ The last term in the exponential gives 1 and hence we
are left with:

∫

d3x M =

∫

d3x M0

(

e
1

2

←−
∂0θ0iPi

)
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Mass of the gauge boson

⋄ The last term in the exponential gives 1 and hence we
are left with:

∫

d3x M =

∫

d3x M0

(

e
1

2

←−
∂0θ0iPi

)

⋄ Hence For θ0i = 0 we have Hθ0 = H00.
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Mass of the gauge boson

⋄ The last term in the exponential gives 1 and hence we
are left with:

∫

d3x M =

∫

d3x M0

(

e
1

2

←−
∂0θ0iPi

)

⋄ Hence For θ0i = 0 we have Hθ0 = H00.

⋄ But there will be additional interaction terms coming

from HM,G
Iθ 6= HM,G

I0 . 40



e− − e− scattering

⋄ Define: x = E/m and t = m2(~T · n̂), T i = θijǫ
ijk and n̂

the unit vector normal to the plane p̂i ⇔ p̂f

|F|2 = |T (t,ΘM , x)|2/|T (0,Π/4, x)|2

and we plot |F|2 ⇔ ΘM .
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e− − e− scattering

⋄ Define: x = E/m and t = m2(~T · n̂), T i = θijǫ
ijk and n̂

the unit vector normal to the plane p̂i ⇔ p̂f

|F|2 = |T (t,ΘM , x)|2/|T (0,Π/4, x)|2

and we plot |F|2 ⇔ ΘM .

⋄We see that NC amplitude does not vanish for
ΘM = π/2.
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