GRAND UNIFICATION WITH \& \& WITHOUT SUPERSYMMETRY
 ALEJANDRA MELFO
 CENTRO DE FíSICA FUNDAMENTAL
 MÉrida, VENEZUELA

IN COLLABORATION WITH:
Goran Senjanovic (ICTP)
Borut Bajc (Ljubljana)
Francesco Vissani (Gran Sasso)
Alba Ramírez (Mérida)

OUTLINE

- GUTs and neutrino mass
- Intermediate scales
- The see-saw and the Yukawa sector
- Non supersymmetric models
- The minimal SUSY model
- Departing from the minimal

GUTS AND NEUTRINO MASS

$\mathrm{SO}(10)$: all fermions in $\underline{16}$ representation
$\mathrm{SU}(5)$ fermions: in $\underline{5}$ and $\underline{10}$ representations

$$
\Rightarrow \nu_{R} \text { is a singlet }
$$

- adding a singlet to the theory gives a lot of new parameters
- $\mathrm{SU}(5)$ breaks directly to $\mathrm{SU}(3) \mathrm{xSU}(2) \mathrm{xU}(1)$
- no intermediate scales
\ldots and m_{ν} calls for intermediate scales

THE (B-L) BREAKING SCALE

Best idea for small m_{ν} : the see-saw mechanism give ν_{R} a mass by breaking B-L at a large scale M_{R}

$$
\begin{array}{cc}
\langle\Delta\rangle \nu_{R}^{T} i \sigma_{2} \nu_{R} & \langle\Delta\rangle=M_{R} \\
m_{\nu}=\frac{M_{W}^{2}}{M_{R}} & m_{\nu} \sim 0.01 e V \\
& M_{R} \sim 10^{13} \mathrm{GeV}
\end{array}
$$

An intermediate scale would be convenient (not indispensable)

SUSY: ONE-STEP UNIFICATION

$$
\frac{1}{\alpha_{i}\left(M_{W}\right)}=\frac{1}{\alpha_{U}}-\frac{b_{i}}{2 \pi} \ln \left(M_{G} / M_{W}\right)
$$

$$
M_{G} \sim 10^{16} \mathrm{GeV}
$$

NON-SUSY:
INTERMEDIATE SCALE

$$
\begin{aligned}
\frac{1}{\alpha_{i}\left(M_{W}\right)}=\frac{1}{\alpha_{U}} & -\frac{b_{i}}{2 \pi} \ln \left(M_{R} / M_{W}\right) \\
& -\frac{b_{i}^{\prime}}{2 \pi} \ln \left(M_{G} / M_{R}\right)
\end{aligned}
$$

M_{R} determined by the particle content

SO(10) SYMMETRY BREAKING

Many possible intermediate scales

$$
S O(10)
$$

$$
\begin{gathered}
M_{X} \Downarrow\langle p\rangle \\
S U(4)_{C} \times S U(2)_{L} \times S U(2)_{R} \\
M_{P S} \Downarrow\langle a\rangle \\
S U(3)_{C} \times S U(2)_{L} \times S U(2)_{R} \times U(1)_{B-L} \\
M_{R} \Downarrow\langle\sigma\rangle \quad \text { GUT scale } \\
S U(3)_{C} \times S U(2)_{L} \times U(1)_{Y}
\end{gathered}
$$

TWO TYPES OF SEE-SAW

TYPE I (renormalizable version)

- An $S U(2)_{R}$ triplet with $(B-L)=2$ gets a vev at a large scale M_{R}

$$
\left\langle\Delta^{c}\right\rangle \Rightarrow \nu^{c} \text { mass } \sim M_{R}
$$

gives a mass to the right-handed neutrino

- At EW scale, neutrino gets a Dirac mass m_{D}

$$
\left(\begin{array}{cc}
0 & m_{D} \\
m_{D} & M_{R}
\end{array}\right) \leadsto m_{\nu} \sim \frac{m_{D}^{2}}{M_{R}} \sim \frac{M_{W}^{2}}{M_{R}}
$$

TYPE II

Mohapatra, Senjanovic, 1980

In Left-Right theories, terms like:

$$
\Delta H^{2} \Delta^{c}+m_{\Delta} \Delta^{2}
$$

H : bidoublet
Δ : Left-handed triplet
Δ^{c} : Right-handed triplet

Provide a small vev for the Left-handed triplet after EW breaking

$$
\langle\Delta\rangle \sim \frac{\langle H\rangle^{2}\left\langle\Delta^{c}\right\rangle}{m_{\Delta}^{2}} \sim \frac{M_{W}^{2}}{M_{R}} \quad \text { Mass for } \nu \text { from } L^{T} \tau_{2}\langle\Delta\rangle L
$$

vev of Δ^{c} induces a small vev for Δ after EW breaking
In SUSY SO(10), triplets are in 126:
mixing with 54 or 210 can give such terms in the potential.
TWO TYPES OF SEE-SAW ARE OF SAME MAGNITUDE: BUT VERY DIFFERENT PARAMETERS INVOLVED

YUKAWA SECTOR

Pati-Salam fourth color:

$$
U=\left(\begin{array}{l}
u \\
u \\
\nu
\end{array}\right) \quad D=\left(\begin{array}{l}
d \\
d \\
d \\
e
\end{array}\right) \ldots
$$

$$
\Psi_{16}=\left(\begin{array}{c}
U \\
D \\
D^{c}(10): \\
U^{c}
\end{array}\right)
$$

- All fermions in one (spinorial) representation
- Couple to:

$$
\begin{array}{ll}
\Psi C \Gamma^{a} \Psi H_{a} & \underline{10} \\
\Psi C \Gamma^{a} \Gamma^{b} \Gamma^{c} \Psi D_{a b c} & \underline{120} \text { (antisym.) } \\
\Psi C \Gamma^{a} \Gamma^{b} \Gamma^{c} \Gamma^{d} \Gamma^{e} \Psi \Sigma_{a b c d e} & \underline{126}
\end{array}
$$

SU(4)c x SU(2)Lx SU(2)R DECOMPOSITION

$$
\begin{aligned}
& H_{10}=(6,1,1)+(1,2,2) \\
& D_{120}=(\overline{10}, 1,1)+(10,1,1)+(6,3,1)+(6,1,3)+(1,2,2)+(15,2,2) \\
& \bar{\Sigma}_{\overline{126}}=(10,1,3)+(\overline{10}, 3,1)+(6,1,1)+(15,2,2) \\
& \quad \Delta_{R} \quad \Delta_{L}
\end{aligned}
$$

- 126 can give type I and type II see-saw
- $(15,2,2)$ in 126 can contain the SM Higgs
- is 126 enough for all fermion masses? no..

One doublet is not enough:

$$
\begin{aligned}
& M_{U}=y_{10}\langle 1,2,2\rangle_{10}^{u}+y_{126}\langle 15,2,2\rangle_{126}^{u} \\
& M_{D}=y_{10}\langle 1,2,2\rangle_{10}^{d}+y_{126}\langle 15,2,2\rangle_{126}^{d} \\
& M_{E}=y_{10}\langle 1,2,2\rangle_{10}^{d}-3 y_{126}\langle 15,2,2\rangle_{126}^{d}
\end{aligned}
$$

- only 10: $m_{d}=m_{l}$
- only 126: $3 m_{d}=m_{l}$ $\} \begin{aligned} & \text { at the GUT scale, } \\ & \text { for all generations }\end{aligned}$
- 126 required for neutrino mass - but what else?
- is there a difference between choosing 10 or 120 ?

Notice: same question for SUSY or non-SUSY models

A. Melfo

NON-SUSY: 126 + 10

(2nd and 3rd generations only)
Bajc, A.M, Senjanovic, Vissani 2005

$$
\begin{aligned}
M_{U} & =y_{10}\langle 1,2,2\rangle_{10}^{u}+y_{126}\langle 15,2,2\rangle_{126}^{u} \\
M_{D} & =y_{10}\langle 1,2,2\rangle_{10}^{d}+y_{126}\langle 15,2,2\rangle_{126}^{d} \\
M_{E} & =y_{10}\langle 1,2,2\rangle_{10}^{d}-3 y_{126}\langle 15,2,2\rangle_{126}^{d} \\
M_{\nu_{D}} & =y_{10}\langle 1,2,2\rangle_{10}^{u}-3 y_{126}\langle 15,2,2\rangle_{126}^{u}
\end{aligned}
$$

$$
\begin{aligned}
& M_{\nu_{L}}=y_{126}\langle\overline{10}, 3,1\rangle_{126}^{d} \\
& M_{\nu_{R}}=y_{126}\langle 10,1,3\rangle_{126}^{d}
\end{aligned}
$$

$$
\text { see-saw, type I and II: } \quad M_{N}=-M_{\nu_{D}} M_{\nu_{R}}^{-1} M_{\nu_{D}}+M_{\nu_{L}}
$$

approx. $\theta_{q}=V_{c b}=0$

$$
\frac{\langle 2,2,1\rangle_{10}^{u}}{\langle 2,2,1\rangle_{10}^{d}},=\frac{m_{c}\left(m_{\tau}-m_{b}\right)-m_{t}\left(m_{\mu}-m_{s}\right)}{m_{s} m_{\tau}-m_{\mu} m_{b}} \approx \frac{m_{t}}{m_{b}}
$$

- real 10: $m_{t}=m_{b}$
- need a complex 10 - PQ symmetry \rightarrow axion as Dark Matter

SUSY OR NOT: $126+10$

$$
\begin{aligned}
M_{D} & =y_{10}\langle 1,2,2\rangle_{10}^{d}+y_{126}\langle 15,2,2\rangle_{126}^{d} \\
M_{E} & =y_{10}\langle 1,2,2\rangle_{10}^{d}-3 y_{126}\langle 15,2,2\rangle_{126}^{d}
\end{aligned}
$$

Type II see-saw: $M_{N}=M_{\nu_{L}}=y_{126}\langle 10,1,3\rangle_{126}^{d}$

$$
\left.\begin{array}{ll}
\theta_{D}=0\left(\text { small mixing in } M_{D}\right) & M_{N} \propto\left(\begin{array}{cc}
0 & 0 \\
m_{s} & =m_{\mu}=0
\end{array}\right. \\
m_{b}-m_{\tau}
\end{array}\right)
$$

unless $m_{b}=m_{\tau}$, neutrino mixing vanishes

$$
\text { large } \theta_{\text {atm }} \leftrightarrow b-\tau \text { unification }
$$

Full 3-gen. analysis:

- connection still true
- θ_{13} close to exp. limit

Matsuda, Koide, Fukuyama, Nishiura 2002
Goh, Mohapatra, Ng, 2003

NON-SUSY: 126 + 120

(2nd and 3rd generations only)

$$
\begin{array}{cc}
M_{U}=y_{120}\left(\langle 1,2,2\rangle_{120}^{u}+\langle 15,2,2\rangle_{120}^{u}\right) & +y_{126}\langle 15,2,2\rangle_{126}^{u} \\
M_{D}=y_{120}\left(\langle 1,2,2\rangle_{120}^{d}+\langle 15,2,2\rangle_{120}^{d}\right) & +y_{126}\langle 15,2,2\rangle_{126}^{d} \\
M_{E}=y_{120}\left(\langle 1,2,2\rangle_{120}^{d}-3\langle 15,2,2\rangle_{120}^{d}\right) & -3 y_{126}\langle 15,2,2\rangle_{126}^{d} \\
M_{\nu_{D}}=y_{120}\left(\langle 1,2,2\rangle_{120}^{u}-3\langle 15,2,2\rangle_{120}^{u}\right) & -3 y_{126}\langle 15,2,2\rangle_{126}^{u} \\
y_{120} \text { antisymmetric }
\end{array}
$$

- real 120: $m_{t}=m_{b}$
- complex 120: interesting connections with neutrino masses and mixings

SUSY OR NOT: 126 + 120

(2nd and 3rd generations only)
Bajc, A.M, Senjanovic, Vissani 2005
Defining some small ratios: $\epsilon_{f}=m_{2}^{f} / m_{3}^{f}$

PREDICTIONS:

- neutrino masses:

$$
\frac{m_{3}^{2}-m_{2}^{2}}{m_{3}^{2}+m_{2}^{2}}=\frac{\cos 2 \theta_{A}}{1-\sin ^{2} 2 \theta_{A} / 2}+\mathcal{O}(|\epsilon|)
$$

- large θ_{A} gives degenerate neutrinos
- quark masses relation at the GUT scale:

$$
\frac{m_{\tau}}{m_{b}}=3+3 \sin 2 \theta_{A} \operatorname{Re}\left[\epsilon_{E}-\epsilon_{D}\right]+\mathcal{O}\left(\left|\epsilon^{2}\right|\right)
$$

- but $m_{\tau} \approx 2 m_{b}$. - include running, 3-gen. effects...
- quark mixing:

$$
\left|V_{c b}\right| \simeq \cos 2 \theta_{A} \frac{m_{s}}{m_{b}}+O\left(\left|\epsilon^{2}\right|\right)
$$

- large neutrino mixing implies small quark mixing

$126+10$ OR $126+120 ?$

- In non-supersymmetric models, both posible in principle
- 10 and 120 need to be complex
- can have a PQ symmetry - axion as DM
- SUSY requires $126+10$ for $m_{b}=m_{\tau}$
- Type II (even Type I) see-saw can give relations between neutrino and charged fermions masses and mixings
- Detailed models can be even more predictive: symmetry breaking and unification constraints
- $10+120$? radiative see-saw - works for split-SUSY

UNIFICATION: NON-SUSY Deshpande, Keith, Pal 1993

$$
m_{\nu} \geq m_{t}^{2} / M_{R} \longrightarrow M_{R} \geq 10^{13} \mathrm{GeV} \quad \log \left(M_{R} / \mathrm{GeV}\right)
$$

| II : | $S O(10) \underset{54}{\longrightarrow}\left\{2_{L} 2_{R} 4_{C} P\right\} \underset{210}{\longrightarrow}\left\{2_{L} 2_{R} 1_{X} 3_{c} P\right\} \underset{h}{\longrightarrow}\left\{2_{L} 1_{Y} 3_{c}\right\}$ | $8.6-13.6$ |
| :---: | :--- | :--- | :--- |
| III : | $S O(10) \underset{54}{\longrightarrow}\left\{2_{L} 2_{R} 4_{C} P\right\} \underset{45}{\longrightarrow}\left\{2_{L} 2_{R} 1_{X} 3_{c}\right\} \underset{h}{\longrightarrow}\left\{2_{L} 1_{Y} 3_{c}\right\}$ | $8.0-13.6$ |

VI :	$S O(10) \underset{54}{\longrightarrow}\left\{2_{L} 2_{R} 4_{C} P\right\} \underset{{ }_{4}}{\longrightarrow}\left\{2_{L} 1_{R} 4_{C}\right\}$	$\xrightarrow[h]{\longrightarrow}\left\{2_{L} 1_{Y} 3_{c}\right\}$	$12.2-13.6$
VII :	$S O(10) \underset{54}{\longrightarrow}\left\{2_{L} 2_{R} 4_{C} P\right\} \underset{210}{\longrightarrow}\left\{2_{L} 2_{R} 4_{C}\right\} \underset{h}{\longrightarrow}\left\{2_{L} 1_{Y} 3_{C}\right\}$	$11.3-13.6$	

UNIFICATION: SUSY

- One-step: no intermediate scales
- $m_{\nu} \propto M_{W}^{2} / M_{G U T}$ can be too small
- Potentials very constrained: no survival principle
- calculate all the masses
- See-saw + SUSY = MSSM with R-parity
- R-parity is in the center of $\mathrm{SO}(10)$
- R-parity \equiv Matter parity $=(-1)^{3(B-L)}$
- See-saw: break (B-L) with a (B-L)-even field in order to give ν_{R} a mass
...get R-parity preserved
and the stable LSP is a DM candidate

WHAT IS THE MINIMAL RENORMALIZABLE SUSY- GUT?

- Based on SO(10)
- With a see-saw for neutrino mass: $\overline{126}(+126)$
- Yukawa sector: $10+\overline{126}$ needed: the light Higgs must be a combination of doublets in 10 and $\overline{126}$
- need a mixing $\langle\Phi\rangle H_{10} \bar{\Sigma}_{\overline{126}} \quad$ can use 210
- Symmetry breaking down to LR (126, $\overline{126}$ break down to MSSM)

$$
\Phi_{210}, H_{10}, \bar{\Sigma}_{\overline{126}}, \Sigma_{126}
$$

- 210 can do that too

MINIMAL SO(10)

Aulakh, Bajc, A.M, Senjanovic, Vissani,2003
$\Psi_{16}, H_{10}, \Sigma_{126}, \bar{\Sigma}_{\overline{1} 26}, \Phi_{210}$

$$
\begin{aligned}
W_{H} & =m_{\Phi} \Phi^{2}+m_{\Sigma} \Sigma \bar{\Sigma}+\lambda \Phi^{3}+\eta \Phi \Sigma \bar{\Sigma}+m_{H} H^{2}+\Phi H(\alpha \Sigma+\bar{\alpha} \bar{\Sigma}) \\
& +y_{10} \Psi C \Gamma \Psi H+y_{126} \Psi C \Gamma^{5} \Psi \bar{\Sigma}
\end{aligned}
$$

- 26 real parameters: same as MSSM
- light Higgs made up of 126,10 and 210 doublets
- rich enough Yukawa structure
- Type I and II see-saw
- possibility of connecting large θ_{A} with $b-\tau$ unification
- symmetry can be broken down to MSSM (+R-parity)
- stable LSP

SYMMETRY BREAKING

$$
\begin{array}{rlrl}
H \equiv \mathbf{1 0}= & (6,1,1)+(1,2,2) & \text { doublets: } \\
\Phi \equiv \mathbf{2 1 0} & = & (15,1,1)+(1,1,1)+(15,1,3) \\
& +(15,3,1)+(6,2,2)+(10,2,2)+(\overline{10}, 2,2) \\
\Sigma \equiv \mathbf{1 2 6} & = & (\overline{10}, 1,3)+(10,3,1)+(6,1,1)+(15,2,2) \\
\Sigma \\
\bar{\Sigma} \equiv \overline{\mathbf{1 2 6}} & = & (10,1,3)+(\overline{10}, 3,1)+(6,1,1)+(15,2,2)
\end{array} M_{W}
$$

- Find the symmetry breaking conditions
- Calculate masses for all states
- Find the composition of the light Higgs

Aulakh, Girdaar, 2004 doublets

Fukuyama, et. al. 2004

AN OVERCONSTRAINED MODEL

After fine-tune of the SM Higgs mass:
8 parameters left in the heavy Higgs sector

$$
m, \alpha, \bar{\alpha},|\lambda|,|\eta|, \phi=\arg \lambda=-\arg \eta \quad \begin{aligned}
& x=\Re(x)+i \Im(x) \\
& \uparrow \\
& \text { ratio of masses }
\end{aligned}
$$

Vevs and masses of all states have form:

$$
\begin{aligned}
\sim & \frac{m}{\lambda} f(x) \\
& \frac{m}{\sqrt{\lambda \eta}} f(x)
\end{aligned}
$$

- variation with parameters quite smooth, with x non -trivial

MASSES OF ALL STATES
$\log \left[M_{i} / 10^{16}\right]$
$x \rightarrow \infty$
x real <1

Light states spoil unification: keep $\mathrm{x}<1$

FERMION MASS FITTING

- The light Higgs is a combination no longer arbitrary
$H_{u, d}=r_{u, d}^{10} H_{u, d}^{10}+r_{u, d}^{\overline{126}} H_{u, d}^{\overline{126}}+r_{u, d}^{126} H_{u, d}^{126}+r_{u, d}^{210} H_{u, d}^{210}$
- $r_{u, d}^{\mathbf{I}}$ known functions of the parameters
- Assume type II see-saw

$$
m_{\nu}=y_{126} v_{\Delta} \quad v_{\Delta}=\frac{\left(\alpha r_{u}^{10}+\sqrt{6} \eta r_{u}^{\overline{126}}\right) r_{u}^{210}}{m_{\Delta}}
$$

- neutrino mass depends on the same parameters

TROUBLE FOR TYPE II SEE-SAW

Some relations among fermion masses depend only on x

$$
M_{u}=\frac{N_{u}}{N_{d}} \tan \beta \times\left[M_{d}+\xi(x)\left(M_{d}-M_{e}\right)\right]
$$

Define the ratio

$$
R=|1+1 / \xi(x)|
$$

then $R>1$ from trace identities

Write type-II mass as

$$
m_{I I}=\frac{v^{2}}{M_{x}} \times \frac{\sin ^{2} \beta}{\cos \beta} \times \alpha \sqrt{\frac{|\lambda|}{|\eta|}} \times \frac{M_{d}-M_{e}}{v} \times \frac{N_{u}^{2}}{N_{d}} \xi_{I I}(x)
$$

\longrightarrow then $\xi_{I I}(x)$ must give $10^{2}-10^{3}$

TOO SMALL
Bajc, A.M, Senjanovic, Vissani 2005 NEUTRINO MASS

THRESHOLD EFFECTS
$\begin{array}{ll}\Delta \sin ^{2} \theta_{W} & \left(M_{W}\right) \\ \Delta \alpha_{U} & \left(M_{G U T}\right) \\ R>1 & \\ R>2 & \end{array}$

General analysis (TYPE I AND II)

- Do the complete fit with all fermion masses and all parameters

Babu, Macesanu
Wang, Yang

- Parameter space for type I and type II getting smaller
- Include unification constrains, threshold effects - even worse
too small neutrino mass: model seems to be ruled out !

WHAT TO DO?

Add more Yukawa couplings: 120

$$
D_{120}=(\overline{10}, 1,1)+(10,1,1)+(6,3,1)+(6,1,3)+(1,2,2)+(15,2,2)
$$

(another 10 or 126 cannot help)

- No SM singlets: symmetry breaking is the same
- Antisymmetric: only 3 complex Yukawa couplings more
- Two doublets mix through:
$c_{1} D_{120} H_{10} \Phi_{210}+c_{2} D_{120} \Sigma_{126} \Phi_{210}+c_{3} D_{120} \bar{\Sigma}_{126} \Phi_{210}$
- More parameters in the superpotential

$$
m_{D}, c_{1}, c_{2}, c_{3}, y_{120} \quad 26+13=39
$$

A. Melfo

Or: Change the Higgs SECTOR

Alternate model: $54+45$ instead of 210

$$
\begin{aligned}
W=m_{H} H^{2}+m_{S} S^{2}+m_{A} A^{2}+m_{\Sigma} \Sigma \bar{\Sigma}+\eta A \Sigma \bar{\Sigma} & A: 45 \\
& +\lambda_{H} H^{2} S+\lambda_{S} S^{3}+\lambda_{A} A^{2} S+\lambda_{\Sigma} \Sigma^{2} S+\lambda_{\bar{\Sigma}} \bar{\Sigma}^{2} S \\
& \Sigma: 126 \\
& H: 10
\end{aligned}
$$

- 29 real parameters
(compare to 26 in minimal model with 210)
- see-saw of type I and II
- $10+126$ but...
- they do not mix - light Higgs is only 10

$54+45$ WITH ADDED 120 : all doublets mix

$D A H+D A \Sigma+D A \bar{\Sigma}$ D : 120
COMPARE WITH $A: 45$
MINIMAL MODEL $\quad \Sigma: 126$

- once you have to enlarge the Yukawa sector, almost same number of parameters: 41 vs. 39
- smaller representations
\Rightarrow find symmetry breaking and mass spectrum

SYMMETRY BREAKING

$$
\begin{aligned}
\left\langle(1,1,1)_{\mathbf{5 4}}\right\rangle & \equiv s
\end{aligned}=\frac{m_{A}}{\lambda_{A}} x .
$$

with

$$
\left(\frac{2}{5} \frac{m_{\Sigma}}{m_{A}} \frac{\lambda_{A}}{\eta_{A}}\right)^{2} \frac{x-1}{(1-2 x)^{2}}-\frac{\lambda_{S}}{\lambda_{A}} x=\frac{m_{S}}{m_{A}}
$$

- one-step breaking at $10^{16} \mathrm{GeV}$
- can arrange for a Type II see-saw dominance

EXAMPLE:
 Arranging A Light triplet

RGE in the MSSM

$$
\ln \left(\frac{M_{G U T}}{M_{W}}\right)=\left(\frac{1}{\alpha_{j}}-\frac{1}{\alpha_{i}}\right) \frac{2 \pi}{b_{i}-b_{j}}
$$

$$
i=1,2,3
$$

Suppose the Δ triplet has a mass $<M_{G U T}$

$$
v_{\Delta} \propto \frac{1}{m_{\Delta}} \quad m_{\nu}=y_{126} v_{\Delta} \quad \text { Type II see-saw }
$$

other light fields could cancel its contribution to the running

$S U(3) \times S U(2) \times U(1)$	δb_{1}	δb_{2}	δb_{3}
$(1,3 ; \pm 1) \Delta$	$9 / 5$	2	0
$(6,1 ; \pm 1 / 3)$	$2 / 5$	0	$5 / 2$
$(1,2 ; \pm 1 / 2)$	$3 / 10$	$1 / 2$	0
Total	$5 / 2$	$5 / 2$	$5 / 2$

A. Melfo

All THEse fields Are Available

$\Delta \begin{aligned} & \left(S_{133^{-}}, \Sigma_{131}\right) \\ & \left(S_{133^{+}}, \Sigma_{\overline{1} 31}\right)\end{aligned} \quad\left(\begin{array}{cc}m_{S}+6 \lambda_{S} s & -\sqrt{2} \lambda_{\Sigma} \sigma \\ \sqrt{2} \lambda_{\bar{\Sigma}} \bar{\sigma} & m_{\Sigma}-3 \eta a\end{array}\right)$

$$
\begin{aligned}
& \left(\bar{\Sigma}_{613^{0}}, C_{611}\right) \\
& \left(\Sigma_{\overline{6} 13^{0}}, C_{\overline{6} 11}\right)
\end{aligned} \quad\left(\begin{array}{cc}
m_{\Sigma}-\eta a & -\sqrt{2} \beta b \\
\sqrt{2} \bar{\beta} b & m_{C}-12 \lambda_{C} s
\end{array}\right)
$$

$\left(H_{122^{-}}, \Sigma_{122^{-}}, \bar{\Sigma}_{122^{-}}, C_{122^{-}}, C_{1^{\prime} 22^{-}}\right)$
$\left(H_{122^{+}}, \bar{\Sigma}_{122^{+}}, \Sigma_{122^{+}}, C_{122^{+}}, C_{1^{\prime} 22^{+}}\right)$

$$
\left(\begin{array}{ccccc}
m_{H}+3 \lambda_{H} s & 0 & 0 & \alpha b & -\sqrt{3} \alpha a \\
0 & m_{\Sigma}-\eta b & -5 \lambda_{\Sigma} s & \sqrt{\frac{3}{2}} \bar{\beta} a & -\frac{1}{\sqrt{2}} \bar{\beta}(2 a-b) \\
0 & -5 \lambda_{\Sigma} s & m_{\Sigma}+\eta b & -\sqrt{\frac{3}{2}} \beta a & -\frac{1}{\sqrt{2}} \beta(2 a+b) \\
\alpha b & \sqrt{\frac{3}{2}} \beta a & -\sqrt{\frac{3}{2}} \bar{\beta} a & m_{C}+18 \lambda_{C} s & 0 \\
\sqrt{3} \alpha a & \frac{1}{\sqrt{2}} \beta(2 a-b) & \frac{1}{\sqrt{2}} \bar{\beta}(2 a+b) & 0 & m_{C}-2 \lambda_{C} s
\end{array}\right)
$$

- enough free parameters to tune their masses at an intermediate scale
- triplet can be as light as necessary for neutrino mass without affecting unification constraints

SUMMARY

- SO(10): ideal framework for small neutrino mass
- Models can provide connections between fermion masses and mixings, for example
- $b-\tau$ unification \Longrightarrow large $\theta_{\text {atm }} \quad(10+126)$
- large neutrino \Longrightarrow small quark mixings $(120+126)$
- large $\theta_{\text {atm }} \longrightarrow$ degenerate neutrinos $(120+126)$
- Non supersymmetric models are alive and well
- Minimal SUSY GUT is in trouble
* lack of intermediate scales
- Next-to-minimal SUSY GUT may not be predictive ...
* but work is in progress

