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Outline

Part I Black hole entropy and black hole partition functions.
Based on joined work with Bernard de Wit, Gabriel Lopes Cardoso and Jürg Käppeli,
i.p. JHEP 03 (2006) 074 .
Review: T.M., Fortschr. Phys. 55 (2007) 519 .

Review of black hole entropy, BPS (supersymmetric) black holes and the string –
black hole correspondence.

N = 2 compactifications, special geometry and the attractor mechanism.

Variational principles and black hole partition functions, the OSV conjeture.

Modified (duality covariant) version of the OSV conjecture, tests in N = 4

compactifications.

Part II From black holes to instantons: special geometry for Euclidean Supergravity and the
r-map.
Based on work to appear/in progress with Vicenté Cortes.
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The Laws of Black Hole Mechanics

(0) κS = const.

(1) δM = κS
8π
δA+ ωδJ + φδq.

(2) δA ≥ 0.

(3) κS = 0 cannot be reached in finite time by any physical process.

ks = surface gravity, M = mass, A = horizon area, ω = horizon angular velocity, J =

angular momentum, φ = chemical (= electrostatic) potential, q = electric charge.
J.M. Bardeen, B. Carter and S.W. Hawking (1973)

Suggests:

κS ∼ T , A ∼ S

where T = temperature and S = Entropy.

The ‘classical’ proofs of these theorems uses Einstein’s field equations explicitly (together
with other assumptions).
However, (0), (1) hold irrespective of the details of the field equations, if appropriate
symmetry conditions are imposed!
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The Laws of Black Hole Mechanics (2)

Modified assumptions: generally covariant Lagrangian with black hole solution such that

(i) black hole is static or stationary, axisymmetric, t− φ reflection symmetric,

(ii) event horizon is a Killing horizon,

(iii) a Cauchy hypersurface exists.

Then

(0) κS = const.
R. Wald and Racz (1995)

(1) δM = κS
2π
δS + ωδJ + φδq.

R. Wald (1993), ...

provided that M,J, S, q are defined as appropriate surface charges.

Entropy:

S =

Z

H

Q[ξ]

ξ = ‘horizontal’ Killing vector field, Q = Noether two-form.
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The Laws of Black Hole Mechanics (2)

Modified assumptions: generally covariant Lagrangian with black hole solution such that

(i) black hole is static or stationary, axisymmetric, t− φ reflection symmetric,

(ii) event horizon is a Killing horizon,

(iii) a Cauchy hypersurface exists.

Then

(0) κS = const.
R. Wald and Racz (1995)

(1) δM = κS
2π
δS + ωδJ + φδq.

R. Wald (1993), ...

provided that M,J, S, q are defined as appropriate surface charges.

Entropy:

S = 2π

Z

H

δL
δRµνρσ

εµνερσ
√
hd2Ω

εµν = normal bivector of horizon,
√
hd2Ω = induced volume form.
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Black Hole Thermodynamics

Hawking radiation:

THawking =
κS

2π
(GN = c = ~ = 1) .

First law:

δM =
κS

8π
δA+ · · ·

⇒ S =
A

4
.
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Black Hole Thermodynamics

Hawking radiation:

THawking =
κS

2π
(GN = c = ~ = 1) .

First law (generalized version):

δM =
κS

2π
δS + · · ·

S =
A

4
+ corrections from higher derivative terms
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Black Hole Thermodynamics

Hawking radiation:

THawking =
κS

2π
(GN = c = ~ = 1) .

First law (generalized version):

δM =
κS

2π
δS + · · ·

S =
A

4
+ corrections from higher derivative terms

S = Smacro = thermodynamical or macroscopic entropy. Unterlying microscopic theory
(=quantum gravity) should specify the microscopic states of the black hole.
Microscopic entropy:

Smicro = log d(M,J, q) , d = #microstates .

Expect: Smacro = Smicro .

Benchmark for theories of quantum gravity!
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The String – Black Hole Correspondence

Idea: black hole microstates = string states at large mass or large coupling.

Semiclassical gravity regime. ↔ Perturbative string regime
√
α′ ≪ rS .

√
α′ ≫ rS

L. Susskind (1993), G.T. Horowitz and J. Polchinski (1997) .
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The String – Black Hole Correspondence

Idea: black hole microstates = string states at large mass or large coupling.

Semiclassical gravity regime. ↔ Perturbative string regime
√
α′ ≪ rS .

√
α′ ≫ rS

Compare 4d Schwarzschild black hole to open bosonic string (truncated).
Relation of gravitational and string scale: GN = g2Sα

′.

String mass formula:

α′M2 ≈ n (for large excitation number n) .

String entropy:

SString = log d(n) ∼ √n .

Schwarzschild radius of string state:

rS ≈ g2S
√
n
√
α′ .
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The String – Black Hole Correspondence

Idea: black hole microstates = string states at large mass or large coupling.

Semiclassical gravity regime. ↔ Perturbative string regime
√
α′ ≪ rS .

√
α′ ≫ rS

Perturbative string in flat space:

g2S
√
n≪ 1⇒ rS ≪

√
α′ , SBH ≪ SString

Semiclassical black hole:

g2S
√
n≫ 1⇒ rS ≫

√
α′ , SBH ≫ SString .

Transition/Crossover(?):

g2S
√
n ≈ 1⇒ rS ≈

√
α′ , SBH ≈ SString .
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The String – Black Hole Correspondence

Idea: black hole microstates = string states at large mass or large coupling.

Semiclassical gravity regime. ↔ Perturbative string regime
√
α′ ≪ rS .

√
α′ ≫ rS

Need to interpolate between two accessible regimes. Intermediate regime not under control.
Matching of entropies up to O(1):

SBH ∼ SString .

Consider supersymmetric (BPS) states. A. Strominger and C. Vafa (1996), ...

Interpolation more plausible.
Can compute Smacro ≡ SBH and Smicro ≡ SString to high precision in their respective
regimes.
Find ‘exact’ matching

SBH ≈ SString ,

including subleading corrections (in large mass = semiclassical expansion).

Supersymmetric Black Holes – p.6



The String – Black Hole Correspondence

Idea: black hole microstates = string states at large mass or large coupling.

Semiclassical gravity regime. ↔ Perturbative string regime
√
α′ ≪ rS .

√
α′ ≫ rS

Besides fundamental strings, also solitonic p-branes are associated with microscopic
degrees of freedom.

E.g. the pioneering work of A. Strominger and C. Vafa involved D-branes, rather than
fundamental strings.

We will discuss examples involving fundamental (and also solitonic) strings later.
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BPS states

Supersymmetry algebra (4d, Weyl spinors):

{Qα, Q
+
β
} = 2σµ

αβ
Pµ
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BPS states

N -extended supersymmetry algebra (4d, Weyl spinors):

{QA
α , Q

+B
β
} = 2σµ

αβ
δABPµ

{QA
α , Q

B
β } = ǫαβZ

AB

A,B, . . . = 1, . . . , N .
Central charges = skew eigenvalues of ZAB :

M2 ≥ |Z1|2 ≥ |Z2|2 ≥ · · · ≥ 0 .

Saturation of inequalities⇒ shortened (BPS) multiplets.
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BPS states

N -extended supersymmetry algebra (4d, Weyl spinors):

{QA
α , Q

+B
β
} = 2σµ

αβ
δABPµ

{QA
α , Q

B
β } = ǫαβZ

AB

A,B, . . . = 1, . . . , N .
Examples:

N = 2:

1. M > |Z|: generic massive multiplet.

2. M = |Z|: short or 1
2

-BPS multiplet.

N = 4:

1. M > |Z1| > |Z2|: generic massive multiplet.

2. M = |Z1| > |Z2|: 1
4

-BPS multiplet.

3. M = |Z1| = |Z2|: 1
2

-BPS multiplet.

Supersymmetric vacua = ‘ 1
1

-BPS’ (fully supersymmetric).
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BPS solitons

BPS states can be realized as finite energy solutions Φ0 of the field equations (asymptotic to
vacuum).

Killing spinors ε↔ residual (rigid) supersymmetry of Φ0:

δε Φ|Φ0
= 0 .

Example: the extremal Reissner-Nordstrom black hole regarded as a solution of N = 2

Supergravity = Einstein-Maxwell + 2 Gravitini.

Has 4 Killing spinors and interpolates between two supersymmetric vacua (8 Killing spinors):
Minkowski space at infinity and AdS2 × S2 (with covariantly constant gauge fields) at
horizon.

G. Gibbons (1982)
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Embedding into string theory

String compactifications give supergravity plus matter.

We consider:

Het/(K3× T 2) and type-II/CY3

−→ N = 2 Supergravity + nV vector multiplets ( + nH hypermultiplets + nT tensor
multiplets ).

Het/T 6 and type-II/(K3× T 2)

−→ N = 4 Supergravity + nV vector multiplets.

Main tool: special geometry of N = 2 vector multiplets.
B. de Wit and A. Van Proeyen (1984) .

All vector multiplet couplings are encoded in a holomorphic prepotential.
Field equations are invariant under Sp(2nV + 2,R) rotations which generalize the
electric-magnetic duality of Maxwell theory, and include stringy symmetries such as T-duality
and S-duality.
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Special geometry (1)

Multiplets:

Gravity multiplet: {e A
µ , ψi

µ,Aµ}.
Vector multiplet: {Aµ, λi, z}A.

i = 1, 2, A = 1, . . . , nV .

Bosonic Lagrangian:

8πe−1Lbos = −R
2
−g

AB
(z, z)∂µz

A∂µzB+
i

4
N IJ (z, z)F−I

µν F
−I|µν− i

4
NIJ (z, z)F+I

µν F
+I|µν

I = 0, 1, . . . , nV .
F±I

µν = (anti-)selfdual part of field strength.

To make electric-magnetic duality manifest, define dual field strength:

G±
I|µν

≃ δL
δF±I|µν

.
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Special Geometry (2)

Field equations are invariant under Sp(2nV + 2,R) rotations.

Symplectic vectors:

Gauge fields and charges:

0

@

F±I
µν

G±
I|µν

1

A ,

0

@

pI

qI

1

A =

0

@

H

F I

H

GI

1

A

Scalars:

0

@

XI

FI

1

A

where ‘scalars’ XI are related to the physical scalars zA by zA = XA

X0 and

FI =
∂F

∂XI
.

Prepotential F (X) is holomorphic and homogenous of degree 2:

F (λXI ) = λ2F (X) .
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Special Geometry (3)

Poincaré Supergravity ←→ Conformal Supergravity

nV vector multiplets (nV + 1) vector multiplets

MV M ←→ CMV M
Φ−→ C2nV +2

zA XI

0

@

XI

FI

1

A

CMV M is a complex cone overMV M . (Prepotential needs to be homogenous).

(Holomorphic) Prepotential F defines holomorphic Lagrangian immersion, Φ = dF into
symplectic vector space C2nV +2 = T∗CnV +1.

Embedding construction explained in: D.V. Alekseevsky, V. Cort és and

C. Devchand, math.dg/9910091.
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Special Geometry (3)

Poincaré Supergravity ←→ Conformal Supergravity

nV vector multiplets (nV + 1) vector multiplets

MV M ←→ CMV M
Φ−→ C2nV +2

zA XI

0

@

XI

FI

1

A

Special geometry is naturally realised in type-II Calabi-Yau compactifications:

MV M = complex structure moduli (IIB).
CMV M = complex structure moduli + holomorphic volume form.C2nV +2 = H3(X,C). Middle cohomology.
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Special Geometry (4)

Real parametrizations and Hesse potential.

Kähler manifold: metric, complex and sympletic structure mutually compatible.
Special Kähler manifold: existence of a flat, torsion-free, symplectic connection, such that
∇[µI

ν
ρ]

= 0 . D.S. Freed (1997)

Special real coordinates:

xI = ReXI , yI = ReFI .

Legendre transform XI = (Re(XI), Im(XI))→ (xI , yI ). All couplings encoded in the
Hesse potential (real Kähler potential):

H(xI , yI ) = 2
“

ImF − (ReFI)(ImXI )
”

„

note ReFI =
∂(ImF )

∂(ImXI )

«

.

V. Cort és (2001) .

The real parametrization is very useful for BPS black holes and other BPS solitons.
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BPS Black Holes

Impose
1
2

-BPS solution, i.e. 4 linearly independent Killing spinors εi: δεiΦ = 0.
Φ = all fields.

Solution static and spherically symmetric.
Metric:

ds2 = −e2g(r)dt2 + e2f(r)(dr2 + r2dΩ2)

1
2

-BPS⇒ g(r) = −f(r).
Gauge fields (using orthonormal frame):

F I
tr = F I

E(r) ∼ qI , F I
θφ = F I

M (r) ∼ pI

Scalars: zA = zA(r) =
XA(r)

X0(r)
=

Y A(r)

Y 0(r)

XI , Y I = ZXI are related by an (r-dependent) rescaling.
Z = pIFI − qIXI = ‘central charge.’

New features, compared to extreme Reissner-Nordstrom black hole: several gauge fields
and charges, scalars.
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Attractor mechanism

1. r →∞: solution asymptotically flat.
zA → zA(∞) ∈MV M .
Minkowski vacuum with arbitrary moduli.

2. r → 0 (event horizon): zA → zA
∗ (p, q).

Gauge fields and metric determined by zA
∗ (p, q):

Solution is Bertotti-Robinson solution AdS2 × S2 with radius fixed by the charges.
Horizon solution = supersymmetric vacuum with fixed moduli.

Attractor mechanism! S. Ferrara, R. Kallosh and A. Strominger (1995) .

Attractor equations:
0

@

Y I − Y I

FI − F I

1

A

∗

= i

0

@

pI

qI

1

A

Entropy:

Smacro =
A

4
= π|Z|2∗ = π|pIFI(X)− qIXI |2∗ = π

“

pIFI(Y )− qIY I
”

∗
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Variational Principle

Complex version.

Entropy function:

Σ(Y, Y , p, q) := F(Y, Y )− qI(Y I + Y
I
) + pI(FI + F I) .

Free energy:

F(Y, Y ) = −i(FIY
I − Y IF I) .

Critical points:
∂Σ

∂Y I
= 0 =

∂Σ

∂Y
I
⇐⇒ attractor equations

Critical value ∝ entropy:

πΣ∗ = Smacro(p, q) .

K. Behrndt, G.L. Cardoso, B. de Wit, R. Kallosh, D. L üst and T.M.

(1996)

Supersymmetric Black Holes – p.16



Variational Principle

Real version:

Entropy function:

Σ(x, y, q, p) = 2H(x, y)− 2qIx
I + 2pIyI .

Free energy ∝ Hesse potential:

2H(x, y) = F(Y, Y ) = −i(FIY
I − Y IF I) .

Critical points:
∂H

∂xI
= qI ,

∂H

∂yI

= −pI ⇔ attractor equations .

Entropy = (full) Legendre transform of Hesse potential:

Smacro(p, q) = 2π

„

H − xI ∂H

∂xI
− yI

∂H

∂yI

«

∗

G.L. Cardoso, B. de Wit, J. K äppeli and T.M., JHEP 03 (2006) 074,

hep-th/0601108 .
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R
2–Corrections

String-effective actions contain an infinite series of higher-derivative terms, computable (in
principle) from string perturbation theory.

In N = 2 supergravity, there is an off-shell description for a particular class of such terms,
(called ‘R2-terms’).

Conformal Supergravity: gravitational degrees of freedom reside in the Weyl multiplet.

Generalized prepotential with explicit dependence on the Weyl multiplet:

F (Y I )→ F (Y I ,Υ) ,

where Υ = lowest component of Weyl multiplet ∼ Graviphoton field strength.

F (Y I ,Υ) is holomorphic and (graded) homogenous of degree two:

F (λY I , λ2Υ) = λ2F (Y I ,Υ) .

Weyl multiplet can be treated as a background field.
B. de Wit, hep-th/9602060, 9603191 .
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R
2–Corrections (2)

Expand in Υ:

F (Y I ,Υ) =

∞
X

g=0

F (g)(Y I)Υg .

Higher derivative terms include:

L ∼
∞
X

g=1

“

F (g)(Y I)(C−
µνρσ)2(T−

αβ
)2g−2 + c.c.

”

+ · · ·

Cµνρσ = Weyl tensor, Tµν = Graviphoton field strength.

In type-II CY compactifications, F (g)(Y I) can be computed in the topologically twisted
theory.
F (g) ∝ genus g contribution to topological free energy, i.e. exp(F (g)) ∝ partition function of
topological string on genus–g world sheet.

M. Beshadsky, S. Cecotti and H. Ooguri (1993).

I. Antoniadis, E. Gava, C. Narain and T.R.Taylor (1993).
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R
2–Corrections (3)

Attractor mechanism generalizes.
Solutions can be constructed, at least iteratively.

Attractor equations:

0

@

Y I − Y I

FI(Y,Υ)− F I(Y ,Υ)

1

A

∗

= i

0

@

pI

qI

1

A , Υ∗ = −64 .

Entropy:

Smacro = SWald = π

„

(pIFI(Y,Υ)− qIY I)− 256 Im
„

∂F

∂Υ

««

∗

Note: modification of area and modification of area law.
Important for matching Smacro = Smicro.

G.L. Cardoso, B. de Wit and T.M. (1998), G.L. Cardoso, B. de Wi t, J.

Käppeli and T.M. (2000)
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Reduced variational principle

Canonical ensemble. Entropy function:

Σ(x, y, q, p) = 2H(x, y)− 2qIx
I + 2pIyI

= Σ(Y, Y , p, q) = F(Y, Y )− qI (Y I + Y
I
) + pI(FI + F I)

(xI , yI) ∝ (φI , χI) electro-/magneto-static potentials = chemical potentials. Related to
electric/magnetic charges by Legendre transform.

Mixed ensemble. Solve magnetic attractor equations:

Y I − Y I
= ipI ⇒ Y I =

1

2
(φI + ipI)

and substitute into Σ. Partial Legendre transform χI → pI . Reduced entropy function (used
by OSV):

Σ(φ, p, q)mix = Fmix(p, φ)− qIφI

where Fmix(p, φ) = 4ImF (Y, Y )

(we suppress Υ in the following, but R2-corrections are included).
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Reduced variational principle (2)

Variation of the reduced entropy function:

Σ(φ, p, q)mix = Fmix(p, φ)− qIφI

where Fmix(p, φ) = 4ImF (Y, Y ) yields the electric attractor equations:

∂Fmix

∂φI
= qI

Moreover: black hole entropy = partial Legendre transform (ReY I ∝ xI ∝ φI → qI ) of free
energy Fmix:

Smacro(p, q) = πΣ∗ = π

„

Fmix − φI ∂Fmix

∂φI

«

∗
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OSV conjecture

Observation:

eπFmix = |eFtop |2 = |Ztop|2

where Ftop ∝ iF (Y I ,Υ) is the (properly normalized) all-genus free energy of the
topological type-II string, and Ztop = all-genus topological partition function.

This is ‘just’ the relation between the topological string and couplings in the effective action.

Conjecture (H. Ooguri, A. Strominger and C. Vafa (2004) ):

eπFmix ≈ ZBH(p, φ)

should be interpreted as the partition function of the black hole (in the mixed ensemble),

ZBH(p, φ) =
X

q

d(p, q)eπqIφI

d(p, q) : microscopic degeneracy (microcanonical ensemble: electric and magnetic charges
fixed).
Ensembles are related by (discrete) Laplace transforms.
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OSV conjecture (2)

Inverse Laplace transform gives prediction of state degeneracy:

d(p, q) ≈
Z

C

dφI eπFmix−qI φI

.

Relation between partition functions:

ZBH ≈ |Ztop|2 .

Weak version: this holds asymptotically in the semiclassical limit = limit of large charges. E.g.
to all orders in 1/Q, Q = charges.
Successfully tested for ‘large’ black holes, not so clear for ‘small’ black holes.

Strong version: exact statement (at least once appropriate amendments are made, i.p. giving
up holomorphic factorization, see later). Intriguing, but much less clear.

Tests: predict free energy F from microscopic state degeneracy d(p, q), or vice versa.
Besides matching numbers (expansion coefficients), try to match structures in ZBH and
Ztop (modular forms, Rademacher-type expansions). I.p. explain ZBH ≈ |Ztop|2.
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Nonholomorphic Corrections

The topological string has a holomorphic anomaly.
M. Bershadsky, S. Cecotti, H. Ooguri and C. Vafa (1993), E.

Witten (1993),

Consequences for OSV have been discussed from this point of view by
R. Dijkgraaf, S. Gukov, A. Neitzke and C. Vafa (2005), E.

Verlinde (2005), ...

Effective field theory: Wilsonian effective action (local, IR cut-off) vs. generating
functional of 1PI graphs (non-local i.g, when massless modes are present).
Physical, duality covariant couplings include non-holomorphic corrections.
L. Dixon, V. Kaplunovski and J. Louis (1991)

The same applies to the entropy of BPS black holes. Generalization of attractor
equations and variational principle:

Im(F (Y,Υ))→ Im(F (Y,Υ)) + 2Ω(Y, Y ,Υ,Υ)

where Ω is real-valued, homogenous of degree 2 and (i.g.) not harmonic.
G.L. Cardoso, B. de Wit and T.M. (1999), G.L. Cardoso, B. de

Wit, J. K äppeli and T.M. (2006).
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A modified version of OSV

Macroscopic entropy = full Legendre transform of Hesse potential. This suggests:

e2πH(x,y) ≈ Z
(can)
BH =

X

p,q

d(p, q)e2π[qIxI−pI yI ]

⇔ eπF(Y,Y ) ≈ Z
(can)
BH =

X

p,q

d(p, q)eπ[qI (Y I+Y
I
)−pI (FI+F I )]

(we suppressed Υ, but inclusion of R2 and nonholomorphic corrections is understood.)

Canonical rather than mixed ensemble.

Symplectic covariance manifest.

Nonholomorphic corrections are included ab initio.

So far, we only have evidence for the weak form of the conjecture.

G.L. Cardoso, B. de Wit, J. K äppeli and T.M. (2006).
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A modified version of OSV (2)

Formal inverse Laplace transform gives state degeneracy in terms of black hole free energy:

d(p, q) ≈
Z

dxdyeπΣ(x,y) ≈
Z

dY dY∆−(Y, Y )eπΣ(Y,Y )

where

∆±(Y, Y ) = |det
ˆ

ImFKL + 2Re(ΩKL ± Ω
KL

)
˜

|

∆− = measure factor, ∆+ = fluctuation determinant of saddle point integral.

Microscopic entropy:

d(p, q) = eSmicro(p,q)

Macroscopic entropy, in saddle point approximation:

d(p, q) ≈ eSmacro(p,q)

s

∆−

∆+
≈ eSmacro(p,q)(1+··· )

Recall: Smacro(p, q) = πΣ∗. Note: ∆± are subleading.
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Comparison to OSV

Partial saddle point approximation wrt ImY I ⇔ Imposing magnetic attractor equations.
(Electric attractor equations follow from extremization of reduced entropy function.)

d(p, q) ≈
Z

dφ
q

∆−(p, φ)eπ[Fmix(φ,p)−qIφI ]

Fmix(φ, p) = free energy in mixed ensemble, including the nonholomorphic corrections
encoded in Ω!
Invert and compare to OSV:

√
∆−eπFmix(p,φ) ≈ Z

(mix)
BH =

X

q

d(p, q)eπqIφI

eπFOSV (p,φ) ≈ Z
(mix)
BH =

X

q

d(p, q)eπqIφI

Original OSV conjecture does not have the measure factor ∆− (which is implied by
symplectic covariance) and FOSV does not include non-holomorphic corrections in the free
energy.
State counting shows that these additional terms are indeed present.
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BPS states inN = 4 compactifications

Charges: (p, q) ∈ Γmagnetic ⊕ Γelectric.

1. p2q2 − (p · q)2 = 0.
Short or 1

2
-BPS multiplet. Example of realisation: fundamental heterotic string states in

Het/T 6, p = 0.
Correspond to ‘small’ black holes (null singularity at two-derivative level, resolved by
R2-corrections, A. Dabholkar, R. Kallosh and A. Maloney (2004). ).

Smacro = 0 + 4π

r

1

2
|q2|+ · · ·

2. p2q2 − (p · q)2 6= 0.
Intermediate or 1

4
-BPS multiplet. Example of realisation: bound state of fundamental

string and solitonic five-brane in Het/T 6.
Correspond to ‘large’ black holes.

Smacro = π
q

p2q2 − (pq)2 + · · ·
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1

4
-BPS states inN = 4 compactifications

1
4

-BPS states of Het/T 6: bound states of fundamental strings (electric) and heterotic
five-branes (magnetic).
State degeneracy:

d(p, q) =

I

dρdσdv
eiπ[ρp2+σq2+(2v−1)pq)]

Φ10(ρ, σ, v)

Contour integral in the Siegel upper half space:

Ω =

0

@

ρ v

v σ

1

A complex, symmetric, positive definite imaginary part.

Φ10 = weight 10 Siegel cusp form (generalizes η24).

(Strong) motivation for the above formula:

Dual type-II picture: worldvolume theory of NS5 brane = string field theory (free limit
sufficient).
R. Dijkgraaf, E. Verlinde and H. Verlinde (1996)

Using the D1-D5 system: S. Shih, A. Strominger and X. Yin (2005) .
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CHL models

Extension to CHL models (N = 4 orbifolds): Φ10 is replaced by a cusp form Φk of weight k,
where (k + 2)(N + 1) = 24 and N = 1, 2, 3, 5, 7 is the order of the orbifold twist.

d(p, q) =

I

dρdσdv
eiπ[ρp2+σq2+(2v−1)pq]

Φk(ρ, σ, v)

D.P. Jatkar and A. Sen (2005)
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N = 4 Supergravity in N = 2 formalism

The relevant subsector of the N = 4 theory is described by N = 2 vector multiplets with
prepotential

F (Y,Υ) = −Y
1Y aηabY

b

Y 0
+ F (1)(S)Υ

where S = −iY 1

Y 0 is the heterotic dilaton, a = 2, . . . , n.

Note F (g>2) = 0 and F (1) = F (1)(S).

Dilaton S is T-duality invariant and transforms under S-duality as:

S → aS − ib
icS + d

Scalar products (q2, p2, p · q) of the electric and magnetic charges q ∈ Γ, p ∈ Γ∗ are
T-duality invariant scalar products and transform in the 3-representation of SL(2,Z)S .
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Reduced variational principle

All attractor equations can be solved except those which determine the dilaton S. The dilaton
attractor equations determine the critical points of the reduced entropy function

Σ(S, S, p, q) = − q
2 − ip · q(S − S) + p2|S|2

S + S
+ 4Ω(S, S,Υ,Υ)

(We absorbed F (1)(S) into Ω(S, S,Υ,Υ).)

Dilaton attractor equations:

∂SΣ = 0 = ∂
S
Σ

Entropy

Smacro(p, q) = πΣ∗

is manifestly T- and S-duality invariant if Ω is S-duality invariant.
G.L. Cardoso, B.de Wit and T.M. (1999), G.L. Cardoso, B.de Wi t, J.

Käppeli and T.M. (2006).
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N = 4 BPS black holes

At the two-derivative level, BPS black hole entropy is:

Smacro = π
q

q2p2 − (q · p)2

M. Cvetic and D. Youm, (1995), E. Bergshoeff, R. Kallosh and T . Ortin

(1996) .
Two cases:

1. Dyonic 1
4

-BPS black holes with non-vanishing area, ‘large black holes.’
q2p2 − (q · p)2 6= 0⇔M = |Z1| > |Z2|.

2. ‘Electric’ 1
2

-BPS black holes with vanishing area (at leading order), ‘small black holes.’
q2p2 − (q · p)2 = 0⇔M = |Z1| = |Z2|.
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Large black holes

Evaluation of

d(p, q) =

I

dρdσdv
eiπ[ρp2+σq2+(2v−1)pq)]

Φ10(ρ, σ, v)

at leading order (saddle point evaluation without fluctuation determinant) gives

Smicro = log d(p, q) ≈ π
q

q2p2 − (q · p)2 ≈ Smacro

R. Dijkgraaf, E. Verlinde and H. Verlinde (1996)

This extends to CHL models.
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R
2- and nonholomorphic corrections

R2 corrections and nonholomorphic corrections are encoded in

Ω =
1

256π

ˆ

Υ log η24(S) + Υ log η24(S) + 1
2
(Υ + Υ) log(S + S)12

˜

J.A. Harvey and G.W. Moore (1996)

Note:

log η24(S) = −2πS − 24e−2πS +O(e−4πS)

Infinite series of space-time instanton corrections.

Saddle point evaluation (including fluctuation determinant) of

d(p, q) =

I

dρdσdv
eiπ[ρp2+σq2+(2v−1)pq)]

Φ10(ρ, σ, v)

gives Smicro(p, q) ≈ πΣ∗ ≈ Smacro(p, q).
Saddle point equations = dilaton attractor equations.
Semiclassical result, includes the non-perturbative terms in Ω.
G.L. Cardoso, B. de Wit, J. K äppeli and T.M. (2004)
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Testing (modified) OSV

Evaluate mixed partition function Z(p, φ) =
P

q d(p, q)e
πqIφI

using integral representation
of d(p, q). Result:

Z(p, φ) =
X

shifts

q

∆̃(p, φ)eπFmixed(p,φ)

(sum over shifts to enforce periodicity), with (mixed) free energy

Fmixed(p, φ) = 1
2
(S + S)

“

paηabp
b − φaηabφ

b
”

− i(S − S)paηabφ
b + 4Ω(S, S,Υ,Υ)

Here

Ω =
1

256π

ˆ

Υ log η24(S) + Υ log η24(S) + 1
2
(Υ + Υ) log(S + S)12

˜

includes both R2 and nonholomorphic corrections.
Measure factor agrees asymptotically with prediction from modified OSV conjecture:

∆̃ ≈ ∆−

D. Shih and X. Yin (2005), G.L. Cardoso, B. de Wit, J. K äppeli and

T.M. (2006) . (Valid for CHL models as well.)
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Remarks

Highly non-trivial test of OSV conjecture, though restricted to the semi-classical limit
(no statement about strong version of the conjecture). Presence of a non-trivial
measure factor has been established.

The asymptotic holomorphic factorization

ZBH ≈ |Ztop|2

can be explained for certain black holes in N = 2 compactifications, using
AdS3/CFT2 and a Rademacher-Jacobi expansion for elliptic genera (=BPS partition
functions). It is due to independent contributions from both branes and antibranes
(M2/M2 or D2/D2).
D. Gaiotto, A. Strominger and X. Yin, hep-th/0602046, P. Kra us

and F. Larsen, hep-th/0607138, C. Beasley, D. Gaiotto, M. Gu ica,

L. Huang, A. Stominger and X. Yin, hep-th/0608021, J. de Boer ,

M.C.N. Cheng, R. Dijkgraaf, J. Manshot and E. Verlinde,

hep-th/0608059 .

The refined analysis of F. Denef and G. Moore, hep-th/0702146 has identified
a microscopic measure factor, which agrees with ours in the semi-classical limit.
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Other higher derivative terms

The Weyl multiplet encodes a specific class of higher derivative terms:

R2F 2g−2 + susy transformed .

Other higher derivative terms should contribute to the entropy as well.

Evidence for particular importance of R2-terms: (i) relation to topological string, (ii) success
in matching Smacro = Smicro. (However: resolution of some null singularities in type-II
compactifications seems to require R4-terms.)

Observation: one can substitute the Gauss-Bonnet term for the whole set of supersymmetric
R2-terms.
K. Behrndt, G.L. Cardoso and S. Mahapatra, NPB 732 (2006) 200 ,

hep-th/0506251, A. Sen, JHEP 03 (2006) 008, hep-th/0508042 .

Entropy appears to be robust!? Universality?

Supersymmetric Black Holes – p.38



Other higher derivative terms (2)

Progress on explicit construction of further higher derivative terms (using superconformal
calculus).
B. de Wit and F. Saueressig, hep-th/0606148

Observe cancellations in supersymmetric backgrounds.

4d −→ 5d lift gives black holes with AdS3 × S2 horizon geometry. Matching of Smacro and
Smicro can be established by (i) using the AdS3/CFT2 correspondence and (ii) by matching
anomalies R2-terms cover precisely the relevant contributions.
P. Kraus and F. Larsen, JHEP 09 (2005) 034, hep-th/0506176 .

Nice lectures on application of AdS3/CFT2 correspondence on 4d and 5d black holes: P.

Kraus, hep-th/0609074 .

Critical discussion of strengths and limits of AdS3/CFT2 approach: A. Dabholkar, A.

Sen and S.P. Trivedi, hep-th/0611143 .
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Non-supersymmetric Black Holes

Attractor mechanism also works for extremal black holes (with AdS2 × S2 horizon
geometry), which are not supersymmetric. This is again independent of the details of the
action, and holds for generally covariant higher derivative theories.
Elegant formalism, based on an entropy function and Wald’s entropy formula:
A. Sen, hep-th/0506177, hep-th/0508042, ...

Relation between Sen’s formalism and the variational principle reviewed here has been
explored by G.L. Cardoso, B. de Wit and S. Mahapatra.

Why is AdS2 × S2 more essential than supersymmetry? Plausibility argument: AdS2 × S2

is a flux compactification on S2. Flux generates scalar potential which fixes scalars. Applies
to non-superysmmetric theories, but also supersymmetric theories can have
non-supersymmetric vacua.

Examples for non-supersymmetric, extremal black holes in supersymmetric
compactifications:
K. Goldstein, N. Iizuka, R.P. Jena and S.P. Trivedi, Phys. Re v. D 72

(2005) 124021, hep-th/0507096, R. Kallosh, JHEP 12 (2005) 0 22,

hep-th/0510024, ...
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Dimensional reduction of (stationary) black holes

(BPS and non-BPS) space-times can be dimensionally reduced using that they have
(commuting) Killing vectors.

Static case: reduction to transverse radial coordinate→ quantum mechanics with
black hole potential. G. Gibbons, S. Ferrara and R. Kallosh (1997) .

Spatial reduction, e.g. relating 4d and 5d black holes D. Gaiotto, A. Strominger

and X. Yin, hep-th/0503217 .

Timelike Killing vector→ dimensional reduction from D + 1 to D (Euclidean)
dimensions. I.p. black holes→ instantons.
Well known in GR, G. Neugebauer and D. Kramer (1969) , . . . also used in
supergravity/string theory, G. Clement and D.V. Gal’tsov (1996) , . . . .
Time-like reduction used recently (in OSV context) by M. Günaydin, A. Neitzke,

B. Pioline and A. Waldron, arXiv:0707.0267 .

T-duality combines dimensional reduction and lifting. E.g., 4d black holes↔ 4d
instantons, K. Behrndt, I. Gaida, D. L üst, S. Mahapatra and T.M.

(1997) .
(Hull’s ∗-type string theories: reduce over time and lift again to time-like direction.)
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Timelike reductions, Euclidean special geometry

Well known: timelike dimensional reduction leads to scalar manifolds with indefinite
signature.

This leads to modifications of special geometry, and of the r-map and c-map (which
relate supermultiplets in 5d/4d/3d).
A systematic study of ‘Euclidean special geometry’ was initiated in V. Cort és, C.

Mayer, T.M. and F. Saueressig, JHEP 0403:028 (rigid vector

multiplets) and JHEP 0506:025 (rigid hypermultiplets) .

Here we discuss the dimensional reduction of 5d supergravity with vector multiples to
four (Euclidean) dimensions, leading to (projective) special para-Kähler geometry. This
gives a ‘temporal version’ of the r-map.
V. Cort és and T.M. in preparation.
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5d supergravity

Bosonic Lagrangian

ê
−1L̂ =

1

2
R̂− 3

4
aij∂µ̂h

i∂µ̂hj − 1

4
aijFi

µ̂ν̂Fjµ̂ν̂ +
ê
−1

6
√

6
cijkǫ

µ̂ν̂ρ̂σ̂λ̂Fi
µ̂ν̂Fj

ρ̂σ̂
Ak

λ̂
.

where i, j,= 1, . . . , n
(5)
V

+ 1 and µ̂, ν̂, . . . = 0, . . . 4.
Scalar manifold M (5) is a real cubic hypersurface V = cijkh

ihjhk = 1 (very special real
manifold).

Metric = (pullback of)

aij = −(
1

3
∂hi∂hj lnV)|V=1 .

M. Günaydin, G. Sierra and P. Townsend (1984) .

Perform reduction over space-like direction (ǫ = −1) and time-like direction (ǫ = +1) in
parallel.
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Dimensional reduction of 5d supergravity

Reduced Lagrangian (in suitable variables):

e
−1Lǫ =

1

2
R− gij

`

∂µx
i∂µxj − ǫ∂µy

i∂µyj
´

+ǫ

„

1

4
cyyy

„

1

6
+

2

3
gxx

«

F 0 · F 0 − 1

3
cyyy (gx)iF

0 · F i +
1

6
cyyy gij F

i · F j

«

−e
−1

12

“

cxxxF 0 · F̃ 0 − 3(cxx)i F
i · F̃ 0 + 3(cx)ij F

i · F̃ j
”

.

where i, j, . . . = 1, . . . , n
(4)
V

= n
(5)
V

+ 1 and cxxx = cijkx
ixjxk, etc.

Lorentz indices: suppressed.
Scalar metric gij ⊕ (−ǫ)gij ,

gij = ǫ
3

2

„

(cy)ij

cyyy
− 3

2

(cyy)i(cyy)j

(cyyy)2

«

does not depend on the ‘axions’ xi, which come from the 5d gauge fields.

For time-like reduction the signature of the scalar manifold is split: (+)n
(4)
V (−)n

(4)
V . (ǫ = −1

for space-like and ǫ = 1 for time-like reduction.)
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ǫ-complex structures

Structure of the Lagrangian suggests to define:

zi = xi + iǫy
i .

where

i2ǫ = ǫ =

8

<

:

−1 (complex structure)

+1 (para-complex structure)

9

=

;

ǫ− complex structure

Definition: An almost ǫ-complex structure on an smooth manifold M is an endomorphism
field I ∈ Γ(EndTM), such that (i) I2 = ǫ and (ii) the eigendistributions ker(Id∓ I) of I have
the same rank (implying that dimension of M must be even).

Similarly: (integrable) ǫ-complex, ǫ-hermitean, ǫ-Kähler and, in fact, (affine/projective)
ǫ-Kähler. See V. Cort és, C. Mayer, T.M. and F. Saueressig, JHEP

0403:028, JHEP 0506:025 and V. Cort és and T.M. in prepration .
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4d Lagrangian

4d Lagrangian can be brought to the following standard form

e
−1L(4) =

1

2
R−Gij∂µz

i∂µzj +
1

4
ImNIJF

IFJ +
e
−1

4
ReNIJF

I F̃J ,

where zi = xi + iǫyi are ǫ-complex scalar fields. Gij and NIJ are given by standard
formulae in terms of a (cubic) ǫ-holomorphic prepotential

F (X) = −1

6
cijk

XiXjXk

X0
,

where XI = (X0, Xi) are valued in an ǫ-complex cone over the scalar manifold M (4)ǫ.
Relation to physical scalars:

zi =
Xi

X0
.

Generalized r-map relates very special real to (very) special ǫ-Kähler manifolds:

rǫ : M
(5)
n −→M

(4)ǫ
2n+2

M
(4)ǫ=±1
2n+2 are two real sections of the same complex-Riemannian space.
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Outlook: Instantons

Instantons (finite action solutions to the Euclidean equations of motion) correspond to
harmonic maps onto completely geodesic, completely isotropic submanifolds of
M (4)ǫ=+1. P. Breitenlohner, D. Maison and G. Gibbons (1988) .

We have contructed a class of instanton solutions, and studied their dual description,
where the axions xi are replaced by tensor fields (vector-tensor multiplets).

These can then be uplifted to 5d stationary solutions.

We believe that some of our solutions are invariant under Euclidean supersymmetry,
but there should exist non-supersymmetric solutions as well.

Conceptual issues: timelike reduction and Wick rotation give different Euclidean
actions (which are real sections of the same complex action). Both seem to play a role,
moreover there is a dual description in terms of a scalar/tensor action.

Relation to black hole partition functions (OSV), minisuperspace approximations,
hidden symmetries, . . .
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Counting 1

2
-BPS states

Partition function for 1
2

-BPS states:

d(q) = d(q2) = 16

I

dτ
exp(iπτq2)

η24(τ)

where τ = τ1 + iτ2 ∈ H (upper half plane) and η(τ) = Dedekind η-function.
η24 is a modular form of weight 12.
Variant of the partitioning problem of G.H. Hardy and S. Ramanujan (1918) .

Evaluation through Rademacher expansion, aka. Farey tail expansion.
H. Rademacher (1938), see R. Dijkgraaf, J. Maldacena, G. Moo re and E.

Verlinde (2000).

d(q2) = 16
∞
X

c=1

c−14Kl( 1
2
|q2|,−1; c)Î13

 

4π

c

r

1

2
|q2|
!

Î13 = modified Bessel functions, Kl= ‘Kloosterman sums’. Contributions c > 1 are
exponentially suppressed for large |q2|.
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Counting 1

2
-BPS states (2)

Leading term

d(q2) = 16 Î13(4π
q

1
2
|q2|)

can be further expanded:

Smicro(q2) = log d(q2) ≈ 4π
q

1
2
|q2| − 27

4
log |q2|+15

2
log(2)− 675

32π|q2| + · · ·

(Taken from A. Dabholkar, F. Denef, G. Moore and B. Pioline (2005) )

First two terms = Cardy formula = saddle point evaluation of the integral representation.
(First term = value of integrand at saddle point, second term = fluctuation determinant.)
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OSV for small black holes

Solution based on two-derivative effective action:

Smacro = π
q

p2q2 − (p · q)2 = 0 for p = 0

Area: A = 0, null singularity.
Scalars attracted to the boundary of moduli space, i.p. dilaton S =∞.

Entropy disagrees with leading order string state counting:

Smicro ≈ 4π
q

1
2
|q2|
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OSV for small black holes (2)

First subleading correction is the (heterotic) tree level R2-term encoded in

log η24(S) = −2πS +O(e−2πS)

Stringy cloaking of the null singularity:

A = 8π
q

1
2
|q2| 6= 0

R2-corrections generate a finite horizon.

Entropy

Smacro =
A

4
+ Wald’s correction =

A

4
+
A

4
=
A

2
= 4π

q

1
2
|q2|

agrees with leading order Smicro. Wald’s modification of the area law is crucial.
A. Dabholkar, R. Kallosh and A. Maloney (2004).

What about subleading terms in the entropy?
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OSV for small black holes (3)

Including the non-holomorphic corrections:

S
(Wald)
macro = 4π

q

1
2
|q2| − 6 log |q2|+ · · ·

S
(Cardy)
micro = 4π

q

1
2
|q2| − 27

4
log |q2|+ · · ·

However, both entropies refer to different ensembles, according to OSV. Our modified
version of the conjecture implies

Smicro = Smacro + log

s

∆−

∆+

But for electric black holes

∆− = 0 up to non-holomorphic terms and instantons

∆+ = 0 up to instantons
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OSV for small black holes (4)

Cannot perform saddle point approximation of the full integral, because leading order
solution is singular.

We can still test the idea that OSV has to be modified by our measure factor ∆− and by
nonholomorphic terms by evaluating

exp(Smicro) = d(p1, q) ≈
Z

dφ
q

∆−(p1, φ)eπ[FE(p1,φ)−qIφI ]

when including the nonholomorphic terms in ∆−.
Note: p1 is an electric charge (for the heterotic string).

Neglecting instanton corrections, we find:

d(p1, q) ≈
Z

dSdS

(S + S)k+4

r

S + S − k + 2

2π
exp

»

− πq2

S + S
+ 2π(S + S)

–

where k = 10 for Het/T 6 and other values for CHL models.
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OSV for small black holes (5)

Thus (for k = 10)

S
(mod.OSV)
predicted ≈ Î

13−
1
2

(4π
q

1
2
|q2|) ≈ 4π

q

1
2
|q2| − 13

2
log |q2|+ · · ·

Smicro ≈ Î13(4π
q

1
2
|q2|) ≈ 4π

q

1
2
|q2| − 27

4
log |q2|+ · · ·

G.L. Cardoso, B. de Wit, J. K äppeli and T.M., hep-th/0601108 .
Slight but systematic mismatch of subleading log and inverse power corrections. Same for
CHL models. Shift is due to the measure. Maybe there is no measure?

Unmodified OSV conjecture: no measure, no nonholomorphic terms:

d(p1, q) ≈
Z

dφeπ[FOSV (p1,φ)−qIφI ] ≈ (p1)2Î13(4π
q

1
2
|q|)

Factor (p1)2 spoils T-duality. (Some) Measure needed.
Index ν = 13 of Bessel function requires to truncate (unmodified) OSV integral to 24
potentials. The dyonic case works with 28.

A. Dabholkar, F. Denef, G. Moore and B. Pioline (2005)
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OSV for small black holes (6)

For small black holes, there are discrepancies at semiclassical limit beyond the leading
term.

A measure factor seems to be needed for duality invariance.

Problems are related to singular behaviour of ‘leading order’ solution. How to set up a
well defined expansion?

When including instanton corrections, the structure of OSV-type integrals looks
different from integral representations of state degeneracies. Unclear how strong
version of the conjecture could work.
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OSV for small black holes (7)

One more result from the comprehensive study of small N = 4 and N = 2 black holes
performed by A. Dabholkar, F. Denef, G. Moore and B. Pioline (2005) . (See
also nice review by B. Pioline, hep-th/0607227 )

In twisted sectors of N = 2 orbifolds, absolute and indexed degeneracies are equal
and agree with OSV.

In the untwisted sector of N = 2 orbifolds, the leading order absolute degeneracies
agree with OSV. Indexed degeneracies are exponentially smaller.

Proposal: absolute degeneracy = ‘appropriate’ index. (Idea: at finite coupling, many
BPS states decay on lines of marginal stability.) F. Denef and G. Moore,

hep-th/0702146 .
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