Predrag Dominis Prester

Theoretical Physics Department Faculty of Science, University of Zagreb

Black holes in

heterotic string theory

P.P., JHEP 0602 (2006) 039
M. Cvitan, P.D.P., S. Pallua \& I. Smolić, hep-th/0706.1167
M. Cvitan, P.D.P. and A. Ficnar, soon.

Contents:

- Strings as BH's \& vice versa
- String μ-state countings
- Heterotic string on $M_{D} \times T^{9-D} \times S^{1}$
- Heterotic string on $M_{4} \times T^{4} \times S^{1} \times \widetilde{S}^{1}$
- Extremal BH's as solutions of LEEA
- BH entropy calculations - technology
- α^{\prime}-corrections in $D=4$ and $D=5$
- truncated actions * SUSY-zed Chern-Simons term * Gauss-Bonnet term
- perturbative calculations
- Small BH's in $D \geq 4$

BH's in string theory

Heavy strings \rightarrow BH's (argued $r_{s}<r_{S c h}$)

- microstate counting at $g_{s} \sim 0 \rightarrow S_{\text {stat }}$

$$
g_{s} \downarrow ? ?
$$

Low energy effective action (some SUGRA) - BH solutions $\rightarrow S_{b h}$

Problem: generally $S_{b h}$ depends on g_{s} !
BPS states \Rightarrow short multiplets \Rightarrow No. of states protected $\Rightarrow S_{s t a t}=S_{b h}$

Extremality essential \Rightarrow non-BPS BH's

Nontrivial test of string theory!

Heterotic string on $\mathcal{M}_{D} \times S^{1} \times T^{9-D}$
$1 / 2$ BPS states in perturbative spectrum

$$
M=\left|k_{R}\right| \quad k_{R, L}=\frac{n}{R} \pm \frac{w R}{\alpha^{\prime}}
$$

Using mass-shell conditions

$$
M^{2}=\frac{4}{\alpha^{\prime}}(N-1)+k_{L}^{2}=\frac{4}{\alpha^{\prime}}\left(\tilde{N}-\delta_{N S}\right)+k_{R}^{2}
$$

From the second equation follows

$$
\tilde{N}=\frac{1}{2} \delta_{N S} \Rightarrow \text { SUSY }- \text { sector not excited }
$$

From the first equation follows

$$
N=n w+1
$$

Using asymptotic formula for number of states

$$
\mathcal{N} \sim \exp (4 \pi \sqrt{N}), \quad N \gg 1
$$

we obtain the statistical entropy of 2-charge BPS states as

$$
S_{\text {stat }}=\ln \mathcal{N} \sim 4 \pi \sqrt{n w}, \quad n w \gg 1
$$

Het. string on $\mathcal{M}_{4} \times S^{1} \times \tilde{S}^{1} \times T^{4}$

8-charge BPS states:
n, \tilde{n} - momenta Nos.
$w, \tilde{w}-$ winding Nos.
N, \tilde{N} - Nos. of Kaluza-Klein monopoles
W, \tilde{W} - Nos. of H-monopoles
Putting $\tilde{n}=\tilde{w}=N=W=0 \rightarrow 4$-charge BPS states with statistical entropy

$$
S_{\text {stat }}=2 \pi \sqrt{n w(\tilde{N} \tilde{W}+4)}, \quad n w \gg 1
$$

Entropy formulae exact in α^{\prime} !

Heterotic LEEA for $S^{1} \times \tilde{S}^{1} \times T^{4}$

Lowest order in α^{\prime} and g_{s} :

$$
\begin{aligned}
\mathcal{L}_{0}= & R+S^{-2}(\partial S)^{2}-T^{-2}(\partial T)^{2}-\tilde{T}^{-2}(\partial \tilde{T})^{2} \\
& -T^{2}\left(F_{\mu \nu}^{(1)}\right)^{2}-T^{-2}\left(F_{\mu \nu}^{(3)}\right)^{2} \\
& -\tilde{T}^{2}\left(F_{\mu \nu}^{(2)}\right)^{2}-\tilde{T}^{-2}\left(F_{\mu \nu}^{(4)}\right)^{2}
\end{aligned}
$$

S - dilaton $\left(1 / g_{s}^{2}\right), \quad T, \tilde{T}$ - radia of S^{1}, \tilde{S}^{1}
$A_{\mu}^{(1)}, A_{\mu}^{(2)}-$ from $g_{\mu 4}, g_{\mu 5} \rightarrow(n, N),(w, W)$
$A_{\mu}^{(3)}, A_{\mu}^{(4)}-\operatorname{from} B_{\mu 4}, B_{\mu 5} \rightarrow(\tilde{n}, \tilde{N}),(\tilde{w}, \tilde{W})$
For 4-charge case $\rightarrow N=W=\tilde{n}=\tilde{w}=0$.
Asymptotically flat BH solutions exist. For extremal and sphericaly symmetric one gets:

$$
\begin{array}{ll}
S\left(r_{H}\right) \sim \sqrt{\left|\frac{n w}{\tilde{N} \tilde{W}}\right|}, \quad & \left(F^{(a)}\right)^{2} \sim \frac{1}{\tilde{N} \tilde{W}} \\
S_{B H}=2 \pi \sqrt{|n w \tilde{N} \tilde{W}|}, & T\left(r_{H}\right)=\sqrt{\frac{n}{w}}
\end{array}
$$

$S_{B H} \neq S_{\text {stat }}$

Observations

- For $\tilde{N}, \tilde{W} \gg 1, S_{\text {stat }} \rightarrow S_{B H}$. It is obvious that expansion in $1 / \tilde{N} \tilde{W}$ is α^{\prime} expansion. To explain discrepancy we need higher terms in α^{\prime} in the effective action. In the string frame

$$
r_{H}^{2} \propto \alpha^{\prime} \tilde{N} \tilde{W} \gg \alpha^{\prime} \sim l_{\text {string }}
$$

i.e., BH is large and α^{\prime} expansion well defined.

- For $n w \gg \tilde{N} \tilde{W}, g_{\text {eff }}^{2} \sim 1 / S \ll 1$. Tree level in string coupling OK.
- Solutions of LEEA for all signs of charges \Rightarrow non-BPS extremal BH's
- (attractor mechanism $)+\left(g_{e f f}^{2} \ll 1\right)$
\Rightarrow Entropy also "protected"
- From string side - statistical entropy

$$
S_{\text {stat }}=2 \pi \sqrt{|n w|(\tilde{N} \tilde{W}+2)}, \quad|n w| \gg 1
$$

- For $\tilde{N} \tilde{W}=0 \rightarrow S_{B H}=0$, horizon becomes null-singular!!? BH is small and α^{\prime} expansion breaks down.
$\mathcal{L}_{e f f}=" R "+\alpha^{\prime} " R^{2 "}+\ldots+\alpha^{\prime n} " R "+\ldots$
As now $R \sim 1 / \alpha^{\prime}$, all terms a priory equally important (infinite number). Full LEEA needed to account for 2-charge BH's?

Entropy in generalized gravity

For manifestly diffeomorphism invariant Lagrangians

$$
L=L\left(g_{a b}, R_{a b c d}, \nabla R_{a b c d}, \psi, \nabla \psi, \ldots\right)
$$

BH entropy is given by Wald formula:

$$
\begin{equation*}
S=-2 \pi \int_{\mathcal{H}} \epsilon_{D-2} \frac{\delta L}{\delta R_{a b c d}} \eta_{a b} \eta_{c d} \tag{1}
\end{equation*}
$$

If

$$
L=L\left(g_{a b}, R_{a b c d}, \nabla R_{a b c d}, \psi, \nabla \psi, \ldots\right)
$$

Recently generalised to theories with Chern-Simons terms.

Entropy function formalism for extremal BH's

Extremality $\rightarrow A d S_{2} \times S^{D-2}$ near-horizon geometry $\rightarrow S O(2,1) \times O(D-1)$ symmetry

$$
\begin{aligned}
& d s^{2}=v_{1}\left(-x^{2} d t^{2}+\frac{d x^{2}}{x^{2}}\right)+v_{2} d \Omega_{D-2}^{2} \\
& \phi_{s}=u_{s} \\
& F_{2}^{(i)}=-e_{i} \epsilon_{2}, \quad H_{D-2}^{(a)}=p_{a} \epsilon_{D-2}
\end{aligned}
$$

all other fields \& cov. derivatives vanishing.
If one defines

$$
f(\vec{u}, \vec{v}, \vec{e}, \vec{p})=\int_{S^{D-2}} \sqrt{-g} \mathcal{L}
$$

then EOM's near the horizon become

$$
\frac{\partial f}{\partial u_{s}}=0, \quad \frac{\partial f}{\partial v_{i}}=0
$$

Entropy and electric charges are

$$
S_{B H}=2 \pi\left(\sum_{i} e_{i} q_{i}-f\right), \quad q_{i}=\frac{\partial f}{\partial e_{i}}
$$

Alternatively, one defines the entropy function

$$
\mathcal{E}(\vec{u}, \vec{v}, \vec{e}, \vec{q}, \vec{p})=2 \pi\left(\sum_{i} e_{i} q_{i}-f\right)
$$

Extremisation of \mathcal{E} gives EOM's and connects electric fields with charges

$$
0=\frac{\partial \mathcal{E}}{\partial u_{s}}=\frac{\partial \mathcal{E}}{\partial v_{i}}=\frac{\partial \mathcal{E}}{\partial e_{i}}
$$

and a value of \mathcal{E} at the extremum is the entropy

$$
S_{B H}=\mathcal{E}
$$

Comments on \mathcal{E}-function method

- Very practical way for near-horizon analyses of extremal BH's.
- Attractor mechanism - direct consequence.
- Directly applicable only for actions with manifest gauge and diffeomorfism invariance (with Chern-Simons terms more effort needed).
- Has been extended to BTZ-type BH's.

α^{\prime} corrections in LEEA

- Full effective string action has ∞ No. of terms (even on tree level)

$$
\mathcal{A}_{e f f}=\sum_{n=1}^{\infty}\left(\alpha^{\prime} " R "\right)^{n}
$$

up to $n=3$ known completely.
\Rightarrow low order perturbative analyses possible

- Taking some truncated actions by adding:

1. Gauss-Bonnet term

$$
\left(R_{a b c d}\right)^{2}-4\left(R_{a b}\right)^{2}+R^{2}
$$

2. SUSY-zation of gravitational

Chern-Simons term

$$
A \wedge R \wedge R+\ldots \quad(\text { in } D=5)
$$

Results in $D=4$

- $S_{\text {stat }}=S_{b h}$ perturbatively up to $\alpha^{\prime 2}$-order (large; BPS and non-BPS)
- $S_{s t a t}=S_{b h}$ for both GB and gCS actions (large and small; BPS)
- also same near-horizon solutions

Why!?

- OSV conjecture in $N=2$ SUGRA

$$
Z_{b h}=\left|Z_{\text {top.string }}\right|^{2}
$$

(large and small; BPS)

- AdS_{3}-view $\rightarrow S_{\text {stat }}=S_{b h}$
(large and small; BPS and non-BPS)
- only anomalies important (i.e., CS terms)
- partial explanation (non-BPS BH's, in some cases no AdS_{3})

Topological origin?

$D=5$ 3-charge heterotic BH's

Heterotic string on $T^{4} \times S^{1}$ - LEEA is $N=2$ SUGRA with prepotential $\mathcal{N}=M_{1} M_{2} M_{3}$ Connection with dilaton and modulus:

$$
M_{1}=S^{-1 / 3} T^{-1}, \quad M_{2}=S^{-1 / 3} T, \quad M_{3}=S^{2 / 3}
$$

3 -charge BH solutions with entropy

$$
S_{b h}^{(0)}=2 \pi \sqrt{n w m}
$$

n and w electric (Maxwell), m magnetic ($B_{\mu \nu}$) integer charge.

For $n, w, m \geq 0$ BPS.

Natural candidate!

Results in $D=5$

- String side $\rightarrow S_{\text {stat }}=$??
- ADS_{3}-argument \rightarrow extension to $D=5$??
- gCS (SUSY)-action gives:

$$
\begin{aligned}
& \mathcal{S}_{b h}=2 \pi \sqrt{n w(m+3)}, \\
& \mathcal{S}_{b h}=2 \pi \sqrt{|n| w(m+1 / 3)}, \quad(\text { non-BPS })
\end{aligned}
$$

- Gauss-Bonnet action gives entropy which starts to differ at $\alpha^{\prime 2}$ for BPS, and α^{\prime} for non-BPS BH's
- Perturbative results up to $\alpha^{\prime 2}$ agree with gCS (SUSY) for BPS, and for non-BPS suggest

$$
\mathcal{S}_{b h}=2 \pi \sqrt{|n| w(m+1)}
$$

- OSV conjecture $4 D / 5 D$ properly uplifted \rightarrow confirms gCS (SUSY) for BPS
\Longrightarrow SUSY wins, GB loses? Not that simple.

Small BH's in $D=5$

For $m=0 \Longrightarrow$ small black holes:

- String theory - DH states:

$$
\begin{aligned}
\mathcal{S}_{\text {stat }} & =4 \pi \sqrt{n w}, \\
\mathcal{S}_{\text {stat }} & =2 \sqrt{2} \pi \sqrt{|n| w}, \quad(\text { non-BPS })
\end{aligned}
$$

- Gauss-Bonnet action:

$$
S_{b h}=4 \pi \sqrt{|n w|}
$$

Agrees for BPS

- gCS (SUSY) action:

$$
\begin{aligned}
\mathcal{S}_{b h} & =2 \sqrt{3} \pi \sqrt{n w} \quad(\mathrm{BPS}) \\
\mathcal{S}_{b h} & =? \\
S_{b h} \neq S_{s t a t} &
\end{aligned}
$$

In $D=5$ large/small BH's limit non-trivial !

Small BH's \rightarrow Lovelock type gravity

Attempt: in general D try with generalized Gauss-Bonnet densities:

$$
\begin{aligned}
\mathcal{L}_{m} & =\lambda_{m} \mathcal{L}_{m}^{G B} \\
& =\frac{\lambda_{m}}{2^{m}} \delta_{\mu_{1} \nu_{1} \ldots \mu_{m} \nu_{m}}^{\rho_{1} \sigma_{1} \ldots \rho_{m} \sigma_{m}} R^{\mu_{1} \nu_{1}}{ }_{\rho_{1} \sigma_{1}} \cdots R^{\mu_{m} \nu_{m}}{ }_{\rho_{m} \sigma_{m}}
\end{aligned}
$$

to construct the action

$$
\mathcal{A}=\frac{1}{16 \pi G_{N}} \int d^{D} x \sqrt{-g} S \sum_{m=1} \alpha^{\prime m-1} \mathcal{L}_{m}
$$

Incredibly, there is a unique fixed choice of λ_{m}, given with

$$
\lambda_{m}=\frac{4}{4^{m} m!}
$$

for which

$$
S_{B H}=2 \pi \sqrt{n w}=S_{\text {stat }}, \quad \forall D
$$

Conclusion and Outlook

- Many examples (in $D=4$ and $D=5$)
- Extension of AdS_{3}-argument to $D=5$?
- Something more general?
- near horizon new type of effective action?
- BPS \rightarrow extremal $\xrightarrow{?}$ realistic BH's
- anomalies
- near-horizon constraints (reguarity, ...)

