Central charge contribution to non-commutativity

B. Nikolić and B. Sazdović

Institute of Physics Belgrade

BW2007

III Southeastern European Workshop
Challenges Beyond the Standard Model
September 2-9, 2007
Kladovo, Serbia

Outline of the talk

- Basic of string theory
- Variational principle, boundary conditions and $D p$-branes
- Definition of the model
- Conformal anomaly and space-time field equations
- Inclusion of Lioville term and $D p$-brane properties
- Conclusions

Basic of string theory

- Strings are objects with one spatial dimension.
- During motion string sweeps a two-dimensional surface called world-sheet.
- The world-sheet is parameterized by two parameters: one time-like τ and one space-like $\sigma, \sigma \in[0, \pi]$.
- Strings occur in two toplogies: closed, which do not have endpoints, and open strings, where contribution of boundary conditions is nontrivial.

Variational principle and boundary conditions

- Let action S depends on the space-time coordinates $x^{\mu},(\mu=0,1, \ldots, D)$ and their derivatives with respect to τ and σ, \dot{x}^{μ} and $x^{\prime \mu}$, respectively. A variation yields

$$
\begin{equation*}
\delta S=\int d \tau d \sigma\left(\frac{\partial \mathcal{L}}{\partial x^{\mu}}-\partial_{\tau} \pi_{\mu}-\partial_{\sigma} \gamma_{\mu}^{(0)}\right) \delta x^{\mu}+\left.\int d \tau \gamma_{\mu}^{(0)} \delta x^{\mu}\right|_{0} ^{\pi}, \tag{1}
\end{equation*}
$$

where $\pi_{\mu}=\frac{\partial \mathcal{L}}{\partial \dot{x}^{\mu}}$ and $\gamma_{\mu}^{(0)}=\frac{\partial \mathcal{L}}{\partial x^{\prime \mu}}$.

- The first term gives Euler-Lagrangian equations of motion, while vanishing of the second term gives boundary conditions.
- The closed strings satisfy boundary conditions automtically, while in the case of the open ones we have to examine their contribution to the string dynamics.

Sorts of boundary conditions

- Arbitrary coordinate variations δx^{μ} at string endpoints gives Neumann boundary conditions

$$
\begin{equation*}
\left.\gamma_{\mu}^{(0)}\right|_{0}=\left.\gamma_{\mu}^{(0)}\right|_{\pi}=0 \tag{2}
\end{equation*}
$$

- Fixed coordinates at the string endpoints

$$
\begin{equation*}
\left.\delta x^{\mu}\right|_{0}=\left.\delta x^{\mu}\right|_{\pi}=0 \tag{3}
\end{equation*}
$$

gives Dirichlet boundary conditions.

$D p$-branes

- $D p$-branes are $p+1$-dimensional objects with p spatial dimensions which satisfy Dirichlet boundary conditions.

Figure: Example of D5-brane

- In D-dimensional space-time for coordinates $x^{i}(i=0,1,2, \ldots, p)$ we choose Neumann boundary conditions, and for the rest ones $x^{a}(a=p+1, \ldots, D)$ Dirichlet boundary conditions, so that $G_{\mu \nu}=0(\mu=i, \nu=a)$.

Definition of the model

Action

- Let us introduce the action which desribes the string dynamics in the presence of metric $G_{\mu \nu}(x)$, antisymmetric Kalb-Ramond field $B_{\mu \nu}(x)$ and dilaton field $\Phi(x)$
$S=\kappa \int_{\Sigma} d^{2} \xi \sqrt{-g}\left\{\left[\frac{1}{2} g^{\alpha \beta} G_{\mu \nu}+\frac{\varepsilon^{\alpha \beta}}{\sqrt{-g}} B_{\mu \nu}\right] \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu}+\Phi R^{(2)}\right\}$,
where $\xi^{\alpha}=(\tau, \sigma)$ parameterizes the world-sheet Σ with metric $g_{\alpha \beta}$. Symbol $R^{(2)}$ denotes scalar curvature corresponding to the metric $g_{\alpha \beta}$.

Quantum world-sheet conformal invariance and space-time field equations

$$
\begin{gather*}
\beta_{\mu \nu}^{G} \equiv R_{\mu \nu}-\frac{1}{4} B_{\mu \rho \sigma} B_{\nu}{ }^{\rho \sigma}+2 D_{\mu} a_{\nu}=0 \tag{5}\\
\beta_{\mu \nu}^{B} \equiv D_{\rho} B^{\rho}{ }_{\mu \nu}-2 a_{\rho} B^{\rho}{ }_{\mu \nu}=0 \tag{6}\\
\beta^{\Phi} \equiv 2 \pi \kappa \frac{D-26}{6}-R-\frac{1}{24} B_{\mu \rho \sigma} B^{\mu \rho \sigma}-D_{\mu} a^{\mu}+4 a^{2}=0 \tag{7}
\end{gather*}
$$

where $R_{\mu \nu}, D_{\mu}$ and R are Ricci tensor, covariant derivative and scalar curvature with respect to the metric $G_{\mu \nu}$,
$B_{\mu \rho \sigma}=\partial_{\mu} B_{\nu \rho}+\partial_{\nu} B_{\rho \mu}+\partial_{\rho} B_{\mu \nu}$ is field strength for the field $B_{\mu \nu}$ and the vector $a_{\mu}=\partial_{\mu} \Phi$ is gradient of dilaton field.

- One particular solution of these equations is

$$
\begin{gather*}
G_{\mu \nu}(x)=G_{\mu \nu}=\text { const }, B_{\mu \nu}(x)=B_{\mu \nu}=\text { const } \tag{8}\\
\Phi(x)=\Phi_{0}+a_{\mu} x^{\mu},\left(a_{\mu}=\text { const }\right) \tag{9}
\end{gather*}
$$

Quantum conformal invariance Lioville term

- If $\beta_{\mu \nu}^{G}=0$ and $\beta_{\mu \nu}^{B}=0 \Longrightarrow \beta^{\Phi}=c$, where c is a constant. (C. G. Callan, D. Friedan, E. J. Martinec and M. J. Perry, Nucl. Phys. B 262 (1985) 593)
- For $G_{\mu \nu}=$ const, $B_{\mu \nu}=$ const and $\Phi=\Phi_{0}+a_{\mu} x^{\mu}$ we have

$$
\begin{equation*}
\beta^{\Phi}=2 \pi \kappa \frac{D-26}{6}+4 a^{2} \equiv c . \tag{10}
\end{equation*}
$$

- The nonlinear sigma model (4) becomes conformal field theory characterized by Virasoro algebra with central charge c.
- The remaining anomaly can be cancelled by adding Liouville term to the action (4)

$$
\begin{equation*}
S_{L}=-\frac{\beta^{\Phi}}{2(4 \pi)^{2} \kappa} \int_{\Sigma} d^{2} \xi \sqrt{-g} R^{(2)} \frac{1}{\Delta} R^{(2)}, \quad \Delta=g^{\alpha \beta} \nabla_{\alpha} \partial_{\beta}, \tag{11}
\end{equation*}
$$

where ∇_{α} is the covariant derivative with respect to $g_{\alpha \beta}$.

Quantum conformal invariance - full action

- Osillations in x^{a} directions decouple from the rest. We use conformal gauge, $g_{\alpha \beta}=e^{2 F} \eta_{\alpha \beta}$. Adding Liouville term, which is quadratic in F, and changing variable $F \rightarrow{ }^{\star} F=F+\frac{\alpha}{2} a_{i} x^{i}$, we cancel term linear in F

$$
\begin{equation*}
S=\kappa \int_{\Sigma} d^{2} \xi\left[\left(\frac{1}{2} \eta^{\alpha \beta \star} G_{i j}+\epsilon^{\alpha \beta} B_{i j}\right) \partial_{\alpha} x^{i} \partial_{\beta} x^{j}+\frac{2}{\alpha} \eta^{\alpha \beta} \partial_{\alpha}{ }^{\star} F \partial_{\beta}{ }^{\star} F\right], \tag{12}
\end{equation*}
$$

where

$$
\begin{equation*}
{ }^{\star} G_{i j}=G_{i j}-\alpha a_{i} a_{j}, \quad\left(\frac{1}{\alpha}=\frac{\beta^{\Phi}}{(4 \pi \kappa)^{2}}\right) \tag{13}
\end{equation*}
$$

depends on the central charge c.

- The field ${ }^{\star} F$ decouples, and the rest part of the action has a dilaton free form up to the change $G_{i j} \rightarrow{ }^{\star} G_{i j}$, where ${ }^{\star} G_{i j}$ can be singular for some choices of background fields.
- For x^{i} and ${ }^{\star} F$ we choose Neumann boundary conditions, which will be treated as canonical constraints.

Case (1) $-A \equiv 1-\alpha a^{2} \neq 0$ and $\tilde{A} \equiv 1-\alpha \tilde{a}^{2} \neq 0$

Hamiltonian and currents

- From $\operatorname{det}^{\star} G_{i j}=A \operatorname{det} G_{i j},\left(\operatorname{det} G_{i j} \neq 0\right)$ follows that redefined metric ${ }^{\star} G_{i j}$ is nonsingular. Because ${ }^{\star} F$ decouples, this case is equivalent to the dilaton free case.
- Canonical Hamiltonian is of the form

$$
\begin{align*}
& H_{c}=\int d \sigma \mathcal{H}_{c}, \quad \mathcal{H}_{c}=T_{-}-T_{+} \\
& T_{ \pm}=\mp \frac{1}{4 \kappa}\left[\left({ }^{\star} G^{-1}\right)^{i j \star} j_{ \pm i}{ }^{\star} j_{ \pm j}+\frac{\alpha}{4}{ }^{\star} j_{ \pm(F)}{ }^{\star} j_{ \pm(F)}\right] \tag{14}
\end{align*}
$$

where the currents are defined as

$$
\begin{equation*}
{ }^{\star} j_{ \pm i}=\pi_{i}+2 \kappa{ }^{\star} \Pi_{ \pm i j} x^{\prime j}, \quad{ }^{\star} j_{ \pm(F)}=\pi \pm \frac{4 \kappa}{\alpha} \star F^{\prime} \tag{15}
\end{equation*}
$$

and $\left({ }^{\star} G^{-1}\right)^{i j}=G^{i j}+\frac{\alpha}{1-\alpha a^{2}} a^{i} a^{j}$ and ${ }^{\star} \Pi_{ \pm i j}=B_{i j} \pm \frac{1}{2}{ }^{\star} G_{i j}$.
The canonical momenta are denoted by π_{i} and π.

Boundary conditions

- Boundary conditions in terms of currents

$$
\begin{gather*}
\gamma_{i}^{(0)}=\left({ }^{\star} \Pi_{+}{ }^{\star} G^{-1}\right)_{i}{ }^{j}{ }^{\star} j_{-j}+\left({ }^{\star} \Pi_{-}{ }^{\star} G^{-1}\right)_{i}{ }^{j}{ }^{\star} j_{+j} \tag{16}\\
\gamma^{(0)}=\frac{1}{2}\left[{ }^{\star} j_{-(F)}-{ }^{\star} j_{+(F)}\right] . \tag{17}
\end{gather*}
$$

- Examing the consistency of the constraints at $\sigma=0$, using Taylor expansion, we obtain

$$
\begin{align*}
\Gamma_{i}(\sigma) & =\left({ }^{\star} \Pi_{+}{ }^{\star} G^{-1}\right)_{i}{ }^{\star}{ }_{-j}(\sigma)+\left({ }^{\star} \Pi_{-}{ }^{\star} G^{-1}\right)_{i}{ }^{\star}{ }^{\star} j_{+j}(-\sigma), \\
\Gamma(\sigma) & =\frac{1}{2}\left[{ }^{\star} j_{-(F)}(\sigma)-{ }^{\star} j_{+(F)}(-\sigma)\right] . \tag{18}
\end{align*}
$$

- In the same way we obtain corresponding expressions at $\sigma=\pi$. The periodicity of canonical variables solves the boundary conditions at $\sigma=\pi$ and we consider only (18).

Algebra of constraints

- Algebra of the constraints $\chi_{A}=\left(\Gamma_{i}, \Gamma\right)$ is

$$
\left\{\chi_{A}(\sigma), \chi_{B}(\bar{\sigma})\right\}=-\kappa M_{A B} \delta^{\prime}, \quad M_{A B}=\left(\begin{array}{cc}
\star G_{i j}^{e f f} & 0 \\
0 & \frac{4}{\alpha}
\end{array}\right),
$$

where

$$
\begin{equation*}
{ }^{\star} G_{i j}^{e f f}={ }^{\star} G_{i j}-4\left(B^{\star} G^{-1} B\right)_{i j} . \tag{20}
\end{equation*}
$$

- From

$$
\begin{equation*}
\operatorname{det}^{\star} G_{i j}^{e f f}=\frac{\tilde{A}^{2}}{A} \operatorname{det} G_{i j}^{e f f} \tag{21}
\end{equation*}
$$

follows that all constraints χ_{A} are of the second class for $\tilde{A} \neq 0$.

Solution of constraints

- Solving $\Gamma_{i}=0$ and $\Gamma=0$, we get

$$
\begin{gather*}
x^{i}(\sigma)=q^{i}(\sigma)-2^{\star} \Theta^{i j} \int_{0}^{\sigma} d \sigma_{1} p_{j}\left(\sigma_{1}\right), \quad \pi_{i}=p_{i}, \tag{22}\\
\star \tag{23}\\
\star={ }^{\star} f, \quad \pi=p
\end{gather*}
$$

where

$$
\begin{equation*}
q^{i}(\sigma)=\frac{1}{2}\left[x^{i}(\sigma)+x^{i}(-\sigma)\right], \quad p_{i}(\sigma)=\frac{1}{2}\left[\pi_{i}(\sigma)+\pi_{i}(-\sigma)\right] \tag{24}
\end{equation*}
$$

and similar for ${ }^{*} f$ and p.

- Antisymmetric tensor ${ }^{*} \Theta^{i j}$ is

$$
\begin{equation*}
{ }^{\star} \Theta^{i j}=-\frac{1}{\kappa}\left({ }^{\star} G_{e f f}^{-1} B^{\star} G^{-1}\right)^{i j} . \tag{25}
\end{equation*}
$$

Noncommutativity

- Poisson brackets are of the form

$$
\begin{gather*}
\left\{x^{i}(\sigma), x^{j}(\bar{\sigma})\right\}={ }^{\star} \Theta^{i j} \Delta(\sigma+\bar{\sigma}), \tag{26}\\
\left\{x^{i}(\sigma),{ }^{\star} F(\bar{\sigma})\right\}=0, \quad\left\{{ }^{\star} F(\sigma),{ }^{\star} F(\bar{\sigma})\right\}=0, \tag{27}
\end{gather*}
$$

where

$$
\Delta(\sigma)= \begin{cases}-1 & \text { if } \sigma=0 \tag{28}\\ 0 & \text { if } 0<\sigma<2 \pi \\ 1 & \text { if } \sigma=2 \pi\end{cases}
$$

- String endpoints move along $D p$-brane, so it is a noncommutative manifold.
- Presence of momenta in the solution for x^{i} makes Poisson brackets to be nonzero.
- Solution for x^{i} as well as the noncommutativity parameter depend on central charge c.

Effective theory

- Using the solution and the expression for canonical Hamiltonian we obtain effective Hamiltonian

$$
\begin{aligned}
& \tilde{H}_{c}=\int d \sigma \tilde{\mathcal{H}}_{c}, \quad \tilde{\mathcal{H}}_{c}=\tilde{T}_{-}-\tilde{T}_{+} \\
& \tilde{T}_{ \pm}=\mp \frac{1}{4 \kappa}\left[\left({ }^{\star} G_{e f f}^{-1}\right)^{\left.i j \star \tilde{j}_{ \pm i} \star \tilde{j}_{ \pm j}+\frac{\alpha}{4} \star \tilde{j}_{ \pm(F)} \star \tilde{j}_{ \pm(F)}\right]}\right. \text { (29) }
\end{aligned}
$$

where we introduced effective currents

$$
\begin{equation*}
\star \tilde{j}_{ \pm i}=p_{i} \pm \kappa^{\star} G_{i j}^{e f f} q^{\prime j}, \quad \star \tilde{j}_{ \pm(F)}=p \pm \frac{4 \kappa}{\alpha} \star f^{\prime} \tag{30}
\end{equation*}
$$

Case (2) - $A=0$ and $\tilde{A} \neq 0$

- For $A=0$ metric ${ }^{\star} G_{i j}$ is singular and its determinant has one zero.
- From the expression for canonical momenta, $\pi_{i}=\kappa\left({ }^{\star} G_{i j} \dot{x}^{j}-2 B_{i j} x^{\prime j}\right)$, and singularity of the metric ${ }^{\star} G_{i j}$ follows that the velocity $x_{0} \equiv a_{i} x^{i}$ can not be expressed in terms of the momenta.
- Current ${ }^{\star} j \equiv a^{i \star} j_{ \pm i}$ is a primary constraint.
- Consistency procedure gives that current ${ }^{\star} j$ is a first class constraint, and consequently, it generates gauge symmetry

$$
\begin{equation*}
\delta_{\eta} X=\{X, G\}, \quad G \equiv \int d \sigma \eta(\sigma)^{\star} j(\sigma) . \tag{31}
\end{equation*}
$$

- Gauge transformations

$$
\begin{align*}
\delta_{\eta} x^{i} & =a^{i} \eta, \quad \delta_{\eta}{ }^{\star} F=0, \\
\delta_{\eta} \pi_{i} & =2 \kappa a^{j} B_{j i} \eta^{\prime}, \quad \delta_{\eta} \pi=0 \tag{32}
\end{align*}
$$

- Good gauge condition is $x_{0} \equiv a_{i} x^{i}=0$.

Case (3) $-\tilde{A}=0$ and $A \neq 0$

- From Eq.(21) we have that $\operatorname{det} M_{A B}$ for $\tilde{A}=0$ has two zeros.
- Singularity of matrix $M_{A B}$ is directly connected with singularity of the metric ${ }^{\star} G_{i j}^{e f f}$.
- Singular directions of ${ }^{\star} G_{i j}^{e f f}$ are \tilde{a}^{i} and $(\tilde{a} B)^{i}$.
- Consequently, two constraints originating from boundary conditions turn into first class constraints

$$
\begin{equation*}
\Gamma_{1}=\tilde{a}^{i} \Gamma_{i}, \quad \Gamma_{2}=2(\tilde{a} B)^{i} \Gamma_{i} . \tag{33}
\end{equation*}
$$

- They generate local gauge symmetry and we fix the gauge

$$
\begin{equation*}
x_{0}=0, \quad x_{1} \equiv(a B)_{i} x^{i}=0 \tag{34}
\end{equation*}
$$

Solution of the cases (2) and (3)

- Solutions have common form

$$
\begin{gather*}
x_{D_{p}}^{i}(\sigma)=Q^{i}(\sigma)-2^{\star} \Theta^{i j} \int_{0}^{\sigma} d \sigma_{1} P_{j}\left(\sigma_{1}\right), \quad \pi_{i}^{D_{p}}=P_{i} \tag{35}\\
\left.x_{0}\right|_{0} ^{\pi}=0, \quad \pi_{0}=0,\left.\quad x_{1}\right|_{0} ^{\pi}=0, \quad \pi_{1}=0 \tag{36}\\
\star \tag{37}\\
{ }^{\star} F={ }^{\star} f, \quad \pi=p
\end{gather*}
$$

where string coordinates $x_{D p}^{i}=\left({ }^{\star} P_{D_{p}}\right)^{i}{ }_{j} x^{j}$ are expressed in terms of effective string variables

$$
\begin{equation*}
Q^{i}=\left({ }^{\star} P_{D_{p}}\right)^{i}{ }_{j} q^{j}, \quad P_{i}=\left({ }^{\star} P_{D_{p}}\right)_{i}{ }^{j} p_{j} . \tag{38}
\end{equation*}
$$

Antisymmetric tensor and projector

- Antisymmetric tensor ${ }^{\star} \Theta^{i j}$ is given by expression

$$
\begin{equation*}
{ }^{\star} \Theta^{i j}=-\frac{1}{\kappa}\left(G_{e f f}^{-1 \star} P_{D_{p}} B G^{-1 \star} P_{D_{p}}\right)^{i j} \tag{39}
\end{equation*}
$$

where

$$
\begin{equation*}
\left({ }^{\star} P_{D_{p}}\right)^{j}=\delta_{i}^{j}-\frac{a_{i} \tilde{a}^{j}}{\tilde{a}^{2}}-\frac{4}{\tilde{a}^{2}-a^{2}}(B a)_{i}(\tilde{a} B)^{j} . \tag{40}
\end{equation*}
$$

projects on the subspace othogonal to the vectors \tilde{a}^{i} and $(\tilde{a} B)^{i}$.

Noncommutativity and effective theory

- Variable ${ }^{\star} F$ decouples and it is a commutative variable, while the $D p$-brane coordinates $X_{D_{p}}^{i}$ satisfy algebra

$$
\begin{equation*}
\left\{x_{D_{p}}^{i}(\tau, \sigma), x_{D_{p}}^{j}(\tau, \bar{\sigma})\right\}=^{\star} \Theta^{i j} \Delta(\sigma+\bar{\sigma}) \tag{41}
\end{equation*}
$$

- The number of $D p$-brane dimensions decreases because x_{0} and x_{1} satisfy Dirichlet boundary conditions.
- Effective Hamiltonian has a form

$$
\begin{aligned}
& \tilde{\mathcal{H}}_{c}=\tilde{T}_{-}-\tilde{T}_{+} \\
& \tilde{T}_{ \pm}=\mp \frac{1}{4 \kappa}\left[\left(G_{e f f}^{-1}{ }^{\star} P_{D_{p}}\right)^{i j \star} \tilde{j}_{ \pm i} \star \tilde{j}_{ \pm j}+\frac{\alpha}{4} \star \tilde{j}_{ \pm(F)}{ }^{\star} \tilde{j}_{ \pm(F)}\right]
\end{aligned}
$$

where

$$
\begin{equation*}
\star \tilde{j}_{ \pm i}=P_{i} \pm \kappa\left({ }^{\star} P_{D_{p}} G_{e f f}\right)_{i j} Q^{\prime j}, \quad \star \tilde{j}_{ \pm(F)}=p \pm \frac{4 \kappa}{\alpha} \star f^{\prime} \tag{42}
\end{equation*}
$$

Conclusions

- Quantum conformal invariance is preserved even in the presence of the conformal factor of the world-sheet metric.
- For $A=0$ metric * $G_{i j}$ is singular producing one standard Dirac constraint. In the case for $\tilde{A}=0$ we have that effective metric ${ }^{*} G_{i j}^{e f f}$ is singular and has two singular directions. Because the algebra of the constraints originating from boundary conditions closes on ${ }^{\star} G_{i j}^{e f f}$, two first class constraints appear.
- First class constraints generate local gauge symmetries which decrease the number of the $D p$-brane dimensions.
- Canonical variables, which describe string dynamics, and noncommutativity parameter depend on the central charge c.
- In the limit $\alpha \rightarrow \infty(c \rightarrow 0)$ we obtain the results of the Liouville free case (B. Nikolić and B. Sazdović, Phys. Rev. D 74 (2006) 045024).

