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Basic of string theory

I Strings are objects with one spatial dimension.

I During motion string sweeps a two-dimensional surface called
world-sheet.

I The world-sheet is parameterized by two parameters: one
time-like τ and one space-like σ, σ ∈ [0 , π].

I Strings occur in two toplogies: closed, which do not have
endpoints, and open strings, where contribution of boundary
conditions is nontrivial.



Variational principle and boundary
conditions

I Let action S depends on the space-time coordinates
xµ , (µ = 0, 1, . . . , D) and their derivatives with respect to τ
and σ, ẋµ and x′µ, respectively. A variation yields

δS =
∫

dτdσ(
∂L
∂xµ

− ∂τπµ − ∂σγ(0)
µ )δxµ +

∫
dτγ(0)

µ δxµ
∣∣π
0

,

(1)

where πµ = ∂L
∂ẋµ and γ

(0)
µ = ∂L

∂x′µ .

I The first term gives Euler-Lagrangian equations of motion,
while vanishing of the second term gives boundary conditions.

I The closed strings satisfy boundary conditions automtically,
while in the case of the open ones we have to examine their
contribution to the string dynamics.



Sorts of boundary conditions

I Arbitrary coordinate variations δxµ at string endpoints gives
Neumann boundary conditions

γ(0)
µ

∣∣
0

= γ(0)
µ

∣∣
π

= 0 . (2)

I Fixed coordinates at the string endpoints

δxµ
∣∣
0

= δxµ
∣∣
π

= 0 , (3)

gives Dirichlet boundary conditions.



Dp-branes
I Dp-branes are p + 1-dimensional objects with p spatial

dimensions which satisfy Dirichlet boundary conditions.

Figure: Example of D5-brane

I In D-dimensional space-time for coordinates
xi (i = 0 , 1 , 2 , . . . , p) we choose Neumann boundary
conditions, and for the rest ones xa (a = p + 1, . . . , D)
Dirichlet boundary conditions, so that
Gµν = 0 (µ = i , ν = a).



Definition of the model

Action
I Let us introduce the action which desribes the string dynamics

in the presence of metric Gµν(x), antisymmetric
Kalb-Ramond field Bµν(x) and dilaton field Φ(x)

S = κ

∫

Σ
d2ξ

√−g

{[
1
2
gαβGµν +

εαβ

√−g
Bµν

]
∂αxµ∂βxν + ΦR(2)

}
,

(4)
where ξα = (τ , σ) parameterizes the world-sheet Σ with
metric gαβ. Symbol R(2) denotes scalar curvature
corresponding to the metric gαβ.



Quantum world-sheet conformal
invariance and space-time field

equations

βG
µν ≡ Rµν − 1

4
BµρσBν

ρσ + 2Dµaν = 0 , (5)

βB
µν ≡ DρB

ρ
µν − 2aρB

ρ
µν = 0 , (6)

βΦ ≡ 2πκ
D − 26

6
−R− 1

24
BµρσBµρσ −Dµaµ + 4a2 = 0 , (7)

where Rµν , Dµ and R are Ricci tensor, covariant derivative and
scalar curvature with respect to the metric Gµν ,
Bµρσ = ∂µBνρ + ∂νBρµ + ∂ρBµν is field strength for the field Bµν

and the vector aµ = ∂µΦ is gradient of dilaton field.
I One particular solution of these equations is

Gµν(x) = Gµν = const , Bµν(x) = Bµν = const , (8)

Φ(x) = Φ0 + aµxµ , (aµ = const) . (9)



Quantum conformal invariance -
Lioville term

I If βG
µν = 0 and βB

µν = 0 =⇒ βΦ = c, where c is a constant.
(C. G. Callan, D. Friedan, E. J. Martinec and M. J. Perry,
Nucl. Phys. B 262 (1985) 593)

I For Gµν = const, Bµν = const and Φ = Φ0 + aµxµ we have

βΦ = 2πκ
D − 26

6
+ 4a2 ≡ c . (10)

I The nonlinear sigma model (4) becomes conformal field
theory characterized by Virasoro algebra with central charge c.

I The remaining anomaly can be cancelled by adding Liouville
term to the action (4)

SL = − βΦ

2(4π)2κ

∫

Σ
d2ξ

√−gR(2) 1
∆

R(2) , ∆ = gαβ∇α∂β ,

(11)
where ∇α is the covariant derivative with respect to gαβ .



Quantum conformal invariance - full
action

I Osillations in xa directions decouple from the rest. We use
conformal gauge, gαβ = e2F ηαβ . Adding Liouville term, which
is quadratic in F , and changing variable
F → ?F = F + α

2 aix
i, we cancel term linear in F

S = κ

∫

Σ
d2ξ

[(
1
2
ηαβ ?Gij+εαβBij

)
∂αxi∂βxj+

2
α

ηαβ∂α
?F∂β

?F

]
,

(12)
where

?Gij = Gij − αaiaj ,

(
1
α

=
βΦ

(4πκ)2

)
(13)

depends on the central charge c.
I The field ?F decouples, and the rest part of the action has a

dilaton free form up to the change Gij → ?Gij , where ?Gij

can be singular for some choices of background fields.
I For xi and ?F we choose Neumann boundary conditions,

which will be treated as canonical constraints.



Case (1) - A ≡ 1− αa2 6= 0 and Ã ≡ 1− αã2 6= 0

Hamiltonian and currents
I From det ?Gij = A detGij , (detGij 6= 0) follows that

redefined metric ?Gij is nonsingular. Because ?F decouples,
this case is equivalent to the dilaton free case.

I Canonical Hamiltonian is of the form

Hc =
∫

dσHc , Hc = T− − T+ ,

T± = ∓ 1
4κ

[
(?G−1)ij ?j±i

?j±j +
α

4
?j±(F )

?j±(F )

]
(14)

where the currents are defined as

?j±i = πi + 2κ ?Π±ijx
′j , ?j±(F ) = π ± 4κ

α
?F ′ , (15)

and (?G−1)ij = Gij + α
1−αa2 aiaj and ?Π±ij = Bij ± 1

2
?Gij .

The canonical momenta are denoted by πi and π.



Boundary conditions
I Boundary conditions in terms of currents

γ
(0)
i = (?Π+

?G−1)i
j ?j−j + (?Π− ?G−1)i

j ?j+j , (16)

γ(0) =
1
2

[
?j−(F ) − ?j+(F )

]
. (17)

I Examing the consistency of the constraints at σ = 0, using
Taylor expansion, we obtain

Γi(σ) = (?Π+
?G−1)i

j ?j−j(σ) + (?Π− ?G−1)i
j ?j+j(−σ) ,

Γ(σ) =
1
2

[
?j−(F )(σ)− ?j+(F )(−σ)

]
. (18)

I In the same way we obtain corresponding expressions at
σ = π. The periodicity of canonical variables solves the
boundary conditions at σ = π and we consider only (18).



Algebra of constraints

I Algebra of the constraints χA = (Γi,Γ) is

{χA(σ), χB(σ)} = −κMABδ′ , MAB =

(
?Geff

ij 0
0 4

α

)
,

(19)
where

?Geff
ij = ?Gij − 4(B ?G−1B)ij . (20)

I From

det ?Geff
ij =

Ã2

A
det Geff

ij , (21)

follows that all constraints χA are of the second class for
Ã 6= 0.



Solution of constraints
I Solving Γi = 0 and Γ = 0, we get

xi(σ) = qi(σ)− 2 ?Θij

∫ σ

0
dσ1pj(σ1) , πi = pi , (22)

?F = ?f , π = p , (23)

where

qi(σ) =
1
2

[
xi(σ) + xi(−σ)

]
, pi(σ) =

1
2

[πi(σ) + πi(−σ)] ,

(24)
and similar for ?f and p.

I Antisymmetric tensor ?Θij is

?Θij = −1
κ

(?G−1
effB ?G−1)ij . (25)



Noncommutativity
I Poisson brackets are of the form

{xi(σ), xj(σ)} = ?Θij∆(σ + σ) , (26)

{xi(σ), ?F (σ)} = 0 , {?F (σ), ?F (σ)} = 0 , (27)

where

∆(σ) =




−1 if σ = 0
0 if 0 < σ < 2π .
1 if σ = 2π

(28)

I String endpoints move along Dp-brane, so it is a
noncommutative manifold.

I Presence of momenta in the solution for xi makes Poisson
brackets to be nonzero.

I Solution for xi as well as the noncommutativity parameter
depend on central charge c.



Effective theory
I Using the solution and the expression for canonical

Hamiltonian we obtain effective Hamiltonian

H̃c =
∫

dσH̃c , H̃c = T̃− − T̃+ ,

T̃± = ∓ 1
4κ

[
(?G−1

eff )ij ?j̃±i
?j̃±j +

α

4
?j̃±(F )

?j̃±(F )

]
(29)

where we introduced effective currents

?j̃±i = pi ± κ ?Geff
ij q′j , ?j̃±(F ) = p± 4κ

α
?f ′ . (30)



Case (2) - A = 0 and Ã 6= 0

I For A = 0 metric ?Gij is singular and its determinant has one
zero.

I From the expression for canonical momenta,
πi = κ(?Gij ẋ

j − 2Bijx
′j), and singularity of the metric ?Gij

follows that the velocity x0 ≡ aix
i can not be expressed in

terms of the momenta.
I Current ?j ≡ ai?j±i is a primary constraint.
I Consistency procedure gives that current ?j is a first class

constraint, and consequently, it generates gauge symmetry

δηX = {X, G} , G ≡
∫

dση(σ) ?j(σ) . (31)

I Gauge transformations

δηx
i = aiη , δη

?F = 0 ,

δηπi = 2κajBjiη
′ , δηπ = 0 . (32)

I Good gauge condition is x0 ≡ aix
i = 0.



Case (3) - Ã = 0 and A 6= 0
I From Eq.(21) we have that det MAB for Ã = 0 has two zeros.

I Singularity of matrix MAB is directly connected with
singularity of the metric ?Geff

ij .

I Singular directions of ?Geff
ij are ãi and (ãB)i.

I Consequently, two constraints originating from boundary
conditions turn into first class constraints

Γ1 = ãiΓi , Γ2 = 2(ãB)iΓi . (33)

I They generate local gauge symmetry and we fix the gauge

x0 = 0 , x1 ≡ (aB)ix
i = 0 . (34)



Solution of the cases (2) and (3)
I Solutions have common form

xi
Dp

(σ) = Qi(σ)− 2 ?Θij

∫ σ

0
dσ1Pj(σ1) , π

Dp

i = Pi , (35)

x0

∣∣π
0

= 0 , π0 = 0 , x1

∣∣π
0

= 0 , π1 = 0 , (36)

?F = ?f , π = p , (37)

where string coordinates xi
Dp = (?PDp)i

jx
j are expressed in

terms of effective string variables

Qi = (?PDp)
i
jq

j , Pi = (?PDp)i
jpj . (38)



Antisymmetric tensor and projector
I Antisymmetric tensor ?Θij is given by expression

?Θij = −1
κ

(G−1
eff

?PDpBG−1?PDp)
ij , (39)

where

(?PDp)
j = δi

j − aiã
j

ã2
− 4

ã2 − a2
(Ba)i(ãB)j . (40)

projects on the subspace othogonal to the vectors ãi and
(ãB)i.



Noncommutativity and effective
theory

I Variable ?F decouples and it is a commutative variable, while
the Dp-brane coordinates Xi

Dp
satisfy algebra

{xi
Dp

(τ, σ), xj
Dp

(τ, σ)} = ?Θij∆(σ + σ) . (41)

I The number of Dp-brane dimensions decreases because x0

and x1 satisfy Dirichlet boundary conditions.

I Effective Hamiltonian has a form

H̃c = T̃− − T̃+ ,

T̃± = ∓ 1
4κ

[
(G−1

eff
?PDp)

ij ?j̃±i
?j̃±j +

α

4
?j̃±(F )

?j̃±(F )

]
,

where

?j̃±i = Pi±κ(?PDpGeff )ijQ
′j , ?j̃±(F ) = p± 4κ

α
?f ′ . (42)



Conclusions
I Quantum conformal invariance is preserved even in the

presence of the conformal factor of the world-sheet metric.

I For A = 0 metric ?Gij is singular producing one standard
Dirac constraint. In the case for Ã = 0 we have that effective
metric ?Geff

ij is singular and has two singular directions.
Because the algebra of the constraints originating from
boundary conditions closes on ?Geff

ij , two first class
constraints appear.

I First class constraints generate local gauge symmetries which
decrease the number of the Dp-brane dimensions.

I Canonical variables, which describe string dynamics, and
noncommutativity parameter depend on the central charge c.

I In the limit α →∞ (c → 0) we obtain the results of the
Liouville free case (B. Nikolić and B. Sazdović, Phys. Rev. D
74 (2006) 045024).


