Central charge contribution to non-commutativity

B. Nikolić and B. Sazdović Institute of Physics Belgrade

BW2007

III Southeastern European Workshop Challenges Beyond the Standard Model September 2 - 9, 2007 Kladovo, Serbia

Outline of the talk

- Basic of string theory
- \blacktriangleright Variational principle, boundary conditions and Dp-branes
- Definition of the model
- Conformal anomaly and space-time field equations
- ▶ Inclusion of Lioville term and *Dp*-brane properties
- Conclusions

Basic of string theory

- Strings are objects with one spatial dimension.
- During motion string sweeps a two-dimensional surface called world-sheet.
- ► The world-sheet is parameterized by two parameters: one time-like τ and one space-like σ , $\sigma \in [0, \pi]$.
- Strings occur in two toplogies: closed, which do not have endpoints, and open strings, where contribution of boundary conditions is nontrivial.

Variational principle and boundary conditions

• Let action S depends on the space-time coordinates $x^{\mu}, (\mu = 0, 1, \dots, D)$ and their derivatives with respect to τ and σ, \dot{x}^{μ} and x'^{μ} , respectively. A variation yields

$$\delta S = \int d\tau d\sigma \left(\frac{\partial \mathcal{L}}{\partial x^{\mu}} - \partial_{\tau} \pi_{\mu} - \partial_{\sigma} \gamma_{\mu}^{(0)}\right) \delta x^{\mu} + \int d\tau \gamma_{\mu}^{(0)} \delta x^{\mu} \big|_{0}^{\pi},$$
(1)
where $\pi_{\mu} = \frac{\partial \mathcal{L}}{\partial x^{\mu}}$ and $\gamma_{\mu}^{(0)} = \frac{\partial \mathcal{L}}{\partial x'^{\mu}}.$

- The first term gives Euler-Lagrangian equations of motion, while vanishing of the second term gives boundary conditions.
- The closed strings satisfy boundary conditions automtically, while in the case of the open ones we have to examine their contribution to the string dynamics.

Sorts of boundary conditions

 Arbitrary coordinate variations δx^μ at string endpoints gives Neumann boundary conditions

$$\gamma_{\mu}^{(0)}\big|_{0} = \gamma_{\mu}^{(0)}\big|_{\pi} = 0.$$
 (2)

Fixed coordinates at the string endpoints

$$\delta x^{\mu}\big|_{0} = \delta x^{\mu}\big|_{\pi} = 0, \qquad (3)$$

gives Dirichlet boundary conditions.

Dp-branes

 Dp-branes are p + 1-dimensional objects with p spatial dimensions which satisfy Dirichlet boundary conditions.

Figure: Example of D5-brane

In D-dimensional space-time for coordinates xⁱ (i = 0, 1, 2, ..., p) we choose Neumann boundary conditions, and for the rest ones x^a (a = p + 1, ..., D) Dirichlet boundary conditions, so that G_{µν} = 0 (µ = i, ν = a).

Definition of the model

Action

 Let us introduce the action which desribes the string dynamics in the presence of metric G_{μν}(x), antisymmetric Kalb-Ramond field B_{μν}(x) and dilaton field Φ(x)

$$S = \kappa \int_{\Sigma} d^2 \xi \sqrt{-g} \left\{ \left[\frac{1}{2} g^{\alpha\beta} G_{\mu\nu} + \frac{\varepsilon^{\alpha\beta}}{\sqrt{-g}} B_{\mu\nu} \right] \partial_{\alpha} x^{\mu} \partial_{\beta} x^{\nu} + \Phi R^{(2)} \right\} ,$$
(4)

where $\xi^{\alpha} = (\tau, \sigma)$ parameterizes the world-sheet Σ with metric $g_{\alpha\beta}$. Symbol $R^{(2)}$ denotes scalar curvature corresponding to the metric $g_{\alpha\beta}$.

Quantum world-sheet conformal invariance and space-time field equations

$$\beta_{\mu\nu}^{G} \equiv R_{\mu\nu} - \frac{1}{4} B_{\mu\rho\sigma} B_{\nu}^{\ \rho\sigma} + 2D_{\mu} a_{\nu} = 0 \,, \tag{5}$$

$$\beta^B_{\mu\nu} \equiv D_\rho B^\rho{}_{\mu\nu} - 2a_\rho B^\rho{}_{\mu\nu} = 0\,, \tag{6}$$

$$\beta^{\Phi} \equiv 2\pi\kappa \frac{D-26}{6} - R - \frac{1}{24} B_{\mu\rho\sigma} B^{\mu\rho\sigma} - D_{\mu}a^{\mu} + 4a^2 = 0, \quad (7)$$

where $R_{\mu\nu}$, D_{μ} and R are Ricci tensor, covariant derivative and scalar curvature with respect to the metric $G_{\mu\nu}$,

 $B_{\mu\rho\sigma} = \partial_{\mu}B_{\nu\rho} + \partial_{\nu}B_{\rho\mu} + \partial_{\rho}B_{\mu\nu}$ is field strength for the field $B_{\mu\nu}$ and the vector $a_{\mu} = \partial_{\mu}\Phi$ is gradient of dilaton field.

One particular solution of these equations is

$$G_{\mu\nu}(x) = G_{\mu\nu} = const, B_{\mu\nu}(x) = B_{\mu\nu} = const,$$
 (8)

$$\Phi(x) = \Phi_0 + a_\mu x^\mu \,, (a_\mu = const) \,. \tag{9}$$

Quantum conformal invariance -Lioville term

• If $\beta^G_{\mu\nu} = 0$ and $\beta^B_{\mu\nu} = 0 \implies \beta^{\Phi} = c$, where c is a constant. (C. G. Callan, D. Friedan, E. J. Martinec and M. J. Perry, *Nucl. Phys.* **B 262** (1985) 593)

▶ For $G_{\mu\nu} = const$, $B_{\mu\nu} = const$ and $\Phi = \Phi_0 + a_\mu x^\mu$ we have

$$\beta^{\Phi} = 2\pi\kappa \frac{D - 26}{6} + 4a^2 \equiv c.$$
 (10)

- The nonlinear sigma model (4) becomes conformal field theory characterized by Virasoro algebra with central charge c.
- The remaining anomaly can be cancelled by adding Liouville term to the action (4)

$$S_L = -\frac{\beta^{\Phi}}{2(4\pi)^2 \kappa} \int_{\Sigma} d^2 \xi \sqrt{-g} R^{(2)} \frac{1}{\Delta} R^{(2)}, \quad \Delta = g^{\alpha\beta} \nabla_{\alpha} \partial_{\beta},$$
(11)

where ∇_{α} is the covariant derivative with respect to $g_{\alpha\beta}$.

Quantum conformal invariance - full action

Osillations in x^a directions decouple from the rest. We use conformal gauge, g_{αβ} = e^{2F}η_{αβ}. Adding Liouville term, which is quadratic in F, and changing variable
 F → *F = F + ^α/₂a_ixⁱ, we cancel term linear in F

$$S = \kappa \int_{\Sigma} d^2 \xi \left[\left(\frac{1}{2} \eta^{\alpha\beta} \,^* G_{ij} + \epsilon^{\alpha\beta} B_{ij} \right) \partial_\alpha x^i \partial_\beta x^j + \frac{2}{\alpha} \eta^{\alpha\beta} \partial_\alpha \,^* F \partial_\beta \,^* F \right], \tag{12}$$

where

$${}^{\star}G_{ij} = G_{ij} - \alpha a_i a_j, \quad \left(\frac{1}{\alpha} = \frac{\beta^{\Phi}}{(4\pi\kappa)^2}\right)$$
(13)

depends on the central charge c.

- ▶ The field ${}^{*}F$ decouples, and the rest part of the action has a dilaton free form up to the change $G_{ij} \rightarrow {}^{*}G_{ij}$, where ${}^{*}G_{ij}$ can be singular for some choices of background fields.
- ► For xⁱ and *F we choose Neumann boundary conditions, which will be treated as canonical constraints.

Case (1) - $A \equiv 1 - \alpha a^2 \neq 0$ and $\tilde{A} \equiv 1 - \alpha \tilde{a}^2 \neq 0$

Hamiltonian and currents

- ▶ From det ${}^*G_{ij} = A \det G_{ij}$, $(\det G_{ij} \neq 0)$ follows that redefined metric ${}^*G_{ij}$ is nonsingular. Because *F decouples, this case is equivalent to the dilaton free case.
- Canonical Hamiltonian is of the form

$$H_{c} = \int d\sigma \mathcal{H}_{c}, \quad \mathcal{H}_{c} = T_{-} - T_{+},$$

$$T_{\pm} = \mp \frac{1}{4\kappa} \left[({}^{*}G^{-1})^{ij} {}^{*}j_{\pm i} {}^{*}j_{\pm j} + \frac{\alpha}{4} {}^{*}j_{\pm(F)} {}^{*}j_{\pm(F)} \right] (14)$$

where the currents are defined as

$$*j_{\pm i} = \pi_i + 2\kappa *\Pi_{\pm ij} x'^j, \quad *j_{\pm (F)} = \pi \pm \frac{4\kappa}{\alpha} *F', \quad (15)$$

and $({}^{*}G^{-1})^{ij} = G^{ij} + \frac{\alpha}{1-\alpha a^2}a^{i}a^{j}$ and ${}^{*}\Pi_{\pm ij} = B_{ij} \pm \frac{1}{2}{}^{*}G_{ij}$. The canonical momenta are denoted by π_i and π .

Boundary conditions

Boundary conditions in terms of currents

$$\gamma_i^{(0)} = (^*\Pi_+ \ ^*G^{-1})_i{}^j \ ^*j_{-j} + (^*\Pi_- \ ^*G^{-1})_i{}^j \ ^*j_{+j} \,, \qquad (16)$$

$$\gamma^{(0)} = \frac{1}{2} \left[{}^{\star} j_{-(F)} - {}^{\star} j_{+(F)} \right] \,. \tag{17}$$

Examing the consistency of the constraints at σ = 0, using Taylor expansion, we obtain

$$\Gamma_{i}(\sigma) = (^{*}\Pi_{+} ^{*}G^{-1})_{i}{}^{j}{}^{*}j_{-j}(\sigma) + (^{*}\Pi_{-} ^{*}G^{-1})_{i}{}^{j}{}^{*}j_{+j}(-\sigma),$$

$$\Gamma(\sigma) = \frac{1}{2} [^{*}j_{-(F)}(\sigma) - ^{*}j_{+(F)}(-\sigma)].$$
(18)

In the same way we obtain corresponding expressions at σ = π. The periodicity of canonical variables solves the boundary conditions at σ = π and we consider only (18).

Algebra of constraints

• Algebra of the constraints $\chi_A = (\Gamma_i, \Gamma)$ is

$$\{\chi_A(\sigma),\chi_B(\overline{\sigma})\} = -\kappa M_{AB}\delta', \qquad M_{AB} = \begin{pmatrix} *G_{ij}^{eff} & 0\\ 0 & \frac{4}{\alpha} \end{pmatrix},$$
(19)

where

$${}^{*}G_{ij}^{eff} = {}^{*}G_{ij} - 4(B {}^{*}G^{-1}B)_{ij}.$$
⁽²⁰⁾

From

$$\det {}^{\star}G_{ij}^{eff} = \frac{\tilde{A}^2}{A} \det G_{ij}^{eff} , \qquad (21)$$

follows that all constraints χ_A are of the second class for $\tilde{A} \neq 0.$

Solution of constraints

• Solving $\Gamma_i = 0$ and $\Gamma = 0$, we get

$$x^{i}(\sigma) = q^{i}(\sigma) - 2 \,^{\star} \Theta^{ij} \int_{0}^{\sigma} d\sigma_{1} p_{j}(\sigma_{1}) \,, \quad \pi_{i} = p_{i} \,, \quad (22)$$

$${}^{*}F = {}^{*}f, \quad \pi = p,$$
 (23)

where

$$q^{i}(\sigma) = \frac{1}{2} \left[x^{i}(\sigma) + x^{i}(-\sigma) \right], \quad p_{i}(\sigma) = \frac{1}{2} \left[\pi_{i}(\sigma) + \pi_{i}(-\sigma) \right],$$
(24)

and similar for $\star f$ and p.

• Antisymmetric tensor ${}^{\star}\Theta^{ij}$ is

$$^{*}\Theta^{ij} = -\frac{1}{\kappa} (^{*}G_{eff}^{-1}B \ ^{*}G^{-1})^{ij} \,. \tag{25}$$

Noncommutativity

Poisson brackets are of the form

$$\{x^{i}(\sigma), x^{j}(\overline{\sigma})\} = {}^{\star}\Theta^{ij}\Delta(\sigma + \overline{\sigma}), \qquad (26)$$

$$\{x^{i}(\sigma), {}^{\star}F(\overline{\sigma})\} = 0, \quad \{{}^{\star}F(\sigma), {}^{\star}F(\overline{\sigma})\} = 0, \qquad (27)$$

where

$$\Delta(\sigma) = \begin{cases} -1 & \text{if } \sigma = 0\\ 0 & \text{if } 0 < \sigma < 2\pi \\ 1 & \text{if } \sigma = 2\pi \end{cases}$$
(28)

- String endpoints move along Dp-brane, so it is a noncommutative manifold.
- Presence of momenta in the solution for xⁱ makes Poisson brackets to be nonzero.
- Solution for xⁱ as well as the noncommutativity parameter depend on central charge c.

Effective theory

 Using the solution and the expression for canonical Hamiltonian we obtain effective Hamiltonian

$$\begin{split} \tilde{H}_c &= \int d\sigma \tilde{\mathcal{H}}_c \,, \quad \tilde{\mathcal{H}}_c = \tilde{T}_- - \tilde{T}_+ \,, \\ \tilde{T}_{\pm} &= \mp \frac{1}{4\kappa} \left[({}^*G_{eff}^{-1})^{ij} \, {}^*\tilde{j}_{\pm i} \, {}^*\tilde{j}_{\pm j} + \frac{\alpha}{4} \, {}^*\tilde{j}_{\pm (F)} \, {}^*\tilde{j}_{\pm (F)} \right] (29) \end{split}$$

where we introduced effective currents

$${}^{\star}\tilde{j}_{\pm i} = p_i \pm \kappa \, {}^{\star}G^{eff}_{ij}q'^j \,, \quad {}^{\star}\tilde{j}_{\pm(F)} = p \pm \frac{4\kappa}{\alpha} \, {}^{\star}f' \,.$$
 (30)

Case (2) - A=0 and $\tilde{A}\neq 0$

- For A = 0 metric [★]G_{ij} is singular and its determinant has one zero.
- From the expression for canonical momenta, $\pi_i = \kappa({}^*G_{ij}\dot{x}^j - 2B_{ij}x'^j)$, and singularity of the metric ${}^*G_{ij}$ follows that the velocity $x_0 \equiv a_i x^i$ can not be expressed in terms of the momenta.
- Current $*j \equiv a^{i*}j_{\pm i}$ is a primary constraint.
- Consistency procedure gives that current *j is a first class constraint, and consequently, it generates gauge symmetry

$$\delta_{\eta}X = \{X, G\}, \qquad G \equiv \int d\sigma \eta(\sigma) * j(\sigma).$$
 (31)

Gauge transformations

$$\delta_{\eta} x^{i} = a^{i} \eta, \quad \delta_{\eta} {}^{\star} F = 0,$$

$$\delta_{\eta} \pi_{i} = 2\kappa a^{j} B_{ji} \eta', \quad \delta_{\eta} \pi = 0.$$
(32)

• Good gauge condition is $x_0 \equiv a_i x^i = 0$.

Case (3) - $\tilde{A} = 0$ and $A \neq 0$

- From Eq.(21) we have that $\det M_{AB}$ for $\tilde{A} = 0$ has two zeros.
- ► Singularity of matrix M_{AB} is directly connected with singularity of the metric *G^{eff}_{ij}.
- Singular directions of ${}^{\star}G^{eff}_{ij}$ are \tilde{a}^i and $(\tilde{a}B)^i$.
- Consequently, two constraints originating from boundary conditions turn into first class constraints

$$\Gamma_1 = \tilde{a}^i \Gamma_i \,, \quad \Gamma_2 = 2(\tilde{a}B)^i \Gamma_i \,. \tag{33}$$

They generate local gauge symmetry and we fix the gauge

$$x_0 = 0, \quad x_1 \equiv (aB)_i x^i = 0.$$
 (34)

Solution of the cases (2) and (3)

Solutions have common form

$$x_{D_{p}}^{i}(\sigma) = Q^{i}(\sigma) - 2 * \Theta^{ij} \int_{0}^{\sigma} d\sigma_{1} P_{j}(\sigma_{1}), \quad \pi_{i}^{D_{p}} = P_{i},$$
(35)

$$x_0\Big|_0^{\pi} = 0, \quad \pi_0 = 0, \quad x_1\Big|_0^{\pi} = 0, \quad \pi_1 = 0,$$
 (36)

$${}^{\star}F = {}^{\star}f \,, \quad \pi = p \,, \tag{37}$$

where string coordinates $x_{Dp}^i = ({}^*P_{D_p})^i{}_j x^j$ are expressed in terms of effective string variables

$$Q^{i} = ({}^{\star}P_{D_{p}})^{i}{}_{j}q^{j}, \quad P_{i} = ({}^{\star}P_{D_{p}})_{i}{}^{j}p_{j}.$$
(38)

Antisymmetric tensor and projector

• Antisymmetric tensor $*\Theta^{ij}$ is given by expression

$${}^{\star}\Theta^{ij} = -\frac{1}{\kappa} (G_{eff}^{-1} {}^{\star}P_{D_p} B G^{-1} {}^{\star}P_{D_p})^{ij}, \qquad (39)$$

where

$$({}^{\star}P_{D_p})^j = \delta_i{}^j - \frac{a_i\tilde{a}^j}{\tilde{a}^2} - \frac{4}{\tilde{a}^2 - a^2}(Ba)_i(\tilde{a}B)^j.$$
 (40)

projects on the subspace othogonal to the vectors \tilde{a}^i and $(\tilde{a}B)^i.$

Noncommutativity and effective theory

 Variable *F decouples and it is a commutative variable, while the Dp-brane coordinates Xⁱ_{Dp} satisfy algebra

$$\{x_{D_p}^i(\tau,\sigma), x_{D_p}^j(\tau,\overline{\sigma})\} = {}^{\star}\Theta^{ij}\Delta(\sigma+\overline{\sigma}).$$
(41)

- ► The number of Dp-brane dimensions decreases because x₀ and x₁ satisfy Dirichlet boundary conditions.
- Effective Hamiltonian has a form

$$\begin{split} \tilde{\mathcal{H}}_c &= \tilde{T}_- - \tilde{T}_+ \,, \\ \tilde{T}_{\pm} &= \mp \frac{1}{4\kappa} \left[(G_{eff}^{-1} * P_{D_p})^{ij} \star \tilde{j}_{\pm i} \star \tilde{j}_{\pm j} + \frac{\alpha}{4} \star \tilde{j}_{\pm (F)} \star \tilde{j}_{\pm (F)} \right] \,, \end{split}$$

where

$${}^{*}\tilde{j}_{\pm i} = P_{i} \pm \kappa ({}^{*}P_{D_{p}}G_{eff})_{ij}Q'^{j}, \quad {}^{*}\tilde{j}_{\pm(F)} = p \pm \frac{4\kappa}{\alpha} {}^{*}f'.$$
(42)

Conclusions

- Quantum conformal invariance is preserved even in the presence of the conformal factor of the world-sheet metric.
- ► For A = 0 metric *G_{ij} is singular producing one standard Dirac constraint. In the case for à = 0 we have that effective metric *G^{eff}_{ij} is singular and has two singular directions. Because the algebra of the constraints originating from boundary conditions closes on *G^{eff}_{ij}, two first class constraints appear.
- ► First class constraints generate local gauge symmetries which decrease the number of the *Dp*-brane dimensions.
- Canonical variables, which describe string dynamics, and noncommutativity parameter depend on the central charge c.
- In the limit α → ∞ (c → 0) we obtain the results of the Liouville free case (B. Nikolić and B. Sazdović, Phys. Rev. D 74 (2006) 045024).