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Introduction and Motivation
I Black holes are solutions to Einstein’s equations with

a horizon. The thermodynamic interpretation of black
holes suggests that they carry entropy.

I Bekenstein-Hawking formula

S =
A

4G
.

I String theory gives a microscopic description of the
entropy of a black hole.

I In string theory, they correspond to branes wrapping
various cycles of a Calabi-Yau manifold. Degeneracy
of these microstates corresponding to these brane
configurations give entropy of the black holes.



I Compactifications on Calabi-Yau spaces give rise to
moduli. So the corresponding black hole solutions in
supergravity should also depend on the moduli.

I In particular the entropy should depend on these
moduli, which are continuous parameters!

I Attractor Mechanism gives the explanation to this
puzzle.

I Most of the discussion in literature is on susy
preserving black holes and the corresponding brane
configurations. So we have consistent microscopic
description of entropy for susy preserving black holes.

I What happens to the black holes which don’t
preserve any supersymmetry?



Attractor Mechanism
I Consider Einstein’s theory coupled to a U(1) field.

There are two possible vacuum configurations.
I Flat Minkowski Vacuum.
I AdS2 × S2 (Bertotti-Robinson space).

I A black hole interpolate these two vacua.
I For, N = 2 supergravity theory in 4D coupled to ‘n’

vector multiplets, in addition to metric and gauge
fields, we also have scalars.

I The scalar fields take arbitrary VEVs at the
Minkowskin vacuum. At the AdS2 × S2 vacuum they
flow to a fixed point (which is completely determined
by the charges of the black hole). =⇒ Attractor!



I In order to understand the attractor mechanism better
analyse solutions to the spinor conditions (for a static,
spherically symmetric black hole solution). The
metric and gauge fields are

ds2 = −e2U(r)dt2 + e−2U(r)dr2

F̂Λ
r =

pΛ

r2 eU(r) .

I The gravitino transformation law gives

∂ρU = −
√

f (p, x)eU , ρ =
1
r

.

I The gaugino transformation law gives

∂ρxa = −
√

g(p, x)(xap0 − pa) .



I These equations were derived using special
geometry.

I It can be shown that they imply

∂2
ρxa + h(p, x, ∂ρx)∂ρxa = 0 .

I This equation is independent of U.
I Can be viewed as a generalized geodesic equation

which describe how xa evolve as one moves into the
core of the black hole.

I xa will evolve until it runs into the fixed point

xa
fixed =

pa

p0 .

(Ferrara, Kallosh, Strominger)



Attractor Mechanism and Extrimality
I Consider the Lagrangian

R + (∂xa)2 + F2 + F ∧ F .

I In static, spherically symmetric ansatz this reduces to

(
dU
dr

)2

+ gab
dxa

dr
dxb

dr
+ e2UV(x, p, q)

I In addition, we have the constraint(
dU
dr

)2

+ gab
dxa

dr
dxb

dr
− e2UV(φ, p, q) = 2ST

where S is the entropy and T is the temperature.



I Geometry as well as moduli are regular near horizon
implies

A
4π

= V(xa
h, p, q) ,

and (
∂V
∂xa

)
h

= 0 .

(Ferrara, Gibbons, Kallosh).

I Goldstein, Iizuka, Jena, Trivedi obtained nonsusy
attractors by doing a numerical analysis.



Nonsusy Attractors
I We will consider the type IIA compactification on a

Calabi-Yau manifold at large volume. The low energy
theory is N = 2 sugra coupled to n vector multiplets.

I It is described by the prepotential

F = Dabc
XaXbXc

X0 .

I For convenience, define

Dab = Dabcpc , DabDbc = δc
a , Da = Dabpb , D = Dapa .

I We can have D0, D2, D4, D6 branes with charges
q0, qa, pa, p0 respectively.



I The Kähler potential and superpotential are derived
from F using:

K = − log
[
i
∑

(Xa∂aF − Xa(∂aF)∗)
]

W =
∑

(qaXa − pa∂aF) .

I The effective potential is given in terms of these
quantities as

V = eK
[
gab̄∇aW∇bW + |W|2

]
,

where ∇aW = ∂aW + ∂aKW .
I A regular horizon exists if

gbc̄∇a∇bW∇cW + 2∇aWW
+∂agbc̄∇bW∇cW = 0 .

I We have susy solution if ∇aW = 0, else nonsusy.



Examples
I We will first consider the case when there are no D6

branes. This system can be reduced to the D0− D4
system by a redefinition of the scalars Xa and the D0
charge q0:

q0 → q0 −
1

12
Dabqaqb

xa → xa +
1
6

Dabqb .

I So we set p0 = qa = 0 and also consider the ansatz
xa = pat. Substituting it in the equation of motion we
find

6i
t

(
q0 − Dt2) (

q0 + Dt2) = 0 .



I The susy solution corresponds to the value t = i
√q0

D
with entropy S = 2π

√
Dq0 .

I The nonsusy solution corresponds to t = i
√
−q0

D with
entropy S = 2π

√
−Dq0 .

I Susy solution is guaranteed to be stable. How can we
make sure there are no tachyonic directions for the
nonsusy case?

I Compute the eigen values of the mass matrix.
I Set xa = ipat + δξa + iδya, and expand the potential.

Smass = Aab
(
δξaδξb + δyaδyb) + Bab

(
δξaδξb − δyaδyb)

I For susy solution A > 0 and B = 0, hence all the eigen
values of the mass matrix are positive.



I For nonsusy solution

Aab = 24q0eK0

(
Dab − 3

DaDb

D

)
;

Bab = −24q0eK0Dab .

Hence

Smass = 48q0eK0

(
Dab −

3DaDb

2D

)
δyaδyb

+72eK0

(
−q0

D

)
DaDbδξ

aδξb

= 32q2
0eK0gab̄δyaδyb + 72eK0

(
−q0

D

)
DaDbδξ

aδξb .

I Hence Daδξ
a and all δya are massive. There are

(n− 1) mass less modes.



I Thus, in order to know whether we have a stable
solution, we need to look at the quartic terms (which
in general is quite complicated to evaluate).

I We may exploit the following invariances of the
effective potential:

I The GL(N, R) invariance

xa → Aa
bxb ,

pa → Aa
bpb ,

qa → qb
(
A−1)b

a ,

Dabc → Ddef
(
A−1)d

a

(
A−1)e

b

(
A−1)f

c .

I Invariance under the transformation xa ↔ −x̄a . This
tells only even powers of δξa appear in the expansion.



I The most general quadratic term allowed by this
symmetry is

Vquadr =

√
−D

q0

(
C1Dab + C2

DaDb

D

)
δξaδξb

+

√
−D

q0

(
C3Dab + C4

DaDb

D

)
δyaδyb .

I We can find the coefficients Ci by comparing it with
STU model, which has a prepotential

F = −X1X2X3

X0 .

I This gives

C1 = 0 , C2 = −9 , C3 = 6 , C4 = −9 .



I We can similarly obtain the cubic terms.

Vcubic =
1
q0

(
C1DDabc + C2DabDc

+ C3DaDbc + C4
DaDbDc

D

)
δξaδξbδyc .

I Comparing with STU we find

C1 = 3 , C2 = −9 , C3 = 18 , C4 = 27 .

I Similarly the quartic term can be found to be

V4 = − 9
2D

(
−D

q0

)3/2 (
Dabδξ

aδξb)2
.



I The potential is of the form

V = V0 +
1
2

M2Φ2 + λ1φ
2Φ + λ2φ

4 .

I Integrating out the massive field, we obtain

Vquartic =

(
λ2 −

λ2
1

2M2

)
φ4 .

I Using similar steps we can find the quartic terms

Vquartic =
9

4D

(
−D
q0

)3/2 [
−

(
Dlmδξlδξm)2

+
1
4

(
−D
q0

) (
gab̄DalmδξlδξmDbpqδξ

pδξq
)]

.

I Two competing terms with opposite sign.



I In the D0− D4− D6 case the non-susy extremum is
located at, xa = xa

0 = pa(t1 + it2). The values of t1, t2

are determined by the charges. It is useful to define a
variable s > 0 given by,

s =

√
(p0)2 − 4D

q0
.

The two branches correspond to |s/p0| < 1 and
|s/p0| > 1 respectively. t1 is given by

t1 =


2
s

„
1+ p0

s

«1/3

−
„

1− p0

s

«1/3

“
1+ p0

s

”4/3
+

“
1− p0

s

”4/3 | s
p0 | > 1

2
p0

“
1− s

p0

”1/3
+

“
1+ s

p0

”1/3

“
1− s

p0

”4/3
+

“
1+ s

p0

”4/3 | s
p0 | < 1



I The expression for t2 is given by:

t2 =

{ 4s
(s2−(p0)2)1/3((s+p0)4/3+(s−p0)4/3)

| s
p0 | > 1

4s
((p0)2−s2)1/3((|p0|+s)4/3+(|p0|−s)4/3)

| s
p0 | < 1

I For D0− D6 system we need to take pa → 0. In this
limit (in the |s/p0| < 1 branch)

t1 =
2
p0 , t2 =

(
− q0

D|p0|

)1/3

.

I Hence we have a (n− 1) dimensional moduli space:

Dabcyaybyc = −q0/|p0| .



Conclusion
I For N = 2 sugra coupled to n vector multiplets,

scalars run into a fixed point at the horizon.
I This is a consequence of extrimality. Thus nonsusy

attractors also exist.
I For IIA on Calabi-Yau, we have exact solution for

D0− D4− D6 system. The D0− D4 system has
(n− 1) mass less fields. They have quartic terms and
depending on the charges we may or may not have
stable solutions.

I For (D0− D6) system we have a (n− 1) dimensional
moduli space.


