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Vacuum Decay as Tunnelling
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QED Reminder: Spontaneous Schwinger
The imaginary part of the effective Euler–Heisenberg–Schwinger

Lagrangian describes probability w of e+e− pair production from vacuum

w = 2 ImLeff ∼ Im
∫

ds

s2
eim2s

(
eE

sinh(eEs)
− 1

s

)
∼

∼
∞∑

n=0

1
n2

e−
πm2n

eE

[Euler,Heisenberg 1935; Schwinger 1951]
This expression already has the following characteristic features:

Non-perturbative behaviour in E

Finite imaginary part is extracted directly from the Schwinger
proper-time integral

Semiclassical interpretation is easy: in the above sum, n can be
thought of as world-line instanton topological number.

These properties will manifest themselves in a more complicated fashion in what

we do below for induced Schwinger phenomena.
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Spontaneous vs. Induced
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String Theory Motivation

World-sheets of electrically and magnetically charged (p, q)-strings may form a vertex shown

below

( )-p,q string

( -1)-p,q string

(0,1 string)-

String junction

D3 brane-
D3 brane

-

String junction
becomes a loop

in an external field

( )-p,q string

( )-p,q string

Monopole in an SU(2) theory can be thought as an D-string stretched between two

D3-branes. String theory provides us with a junction, which can account for the decay of

BPS states in low-energy theory. The junction allows for a loop when an external field is on.
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String Theory, Thin Wall Approximation and Electrodynamics

More generally, the action of a compact p-brane configuration is given by a sum of area term
and volume term

S = Sarea + Svolume = T

∫
area

−Q
∫

volume
Φ

where T is p-brane tension, Gμν is the metric, induced by brane embedding into
target-space, Q — brane charge, Φ — flux density of the external (p+ 2)-form field [Gorsky

2001].
This formula is a natural generalization of electrodynamics 1-particle action

S = Sarea + Svolume =

∫
mds+ e

∫
Aμdx

μ

On the other hand, this is the action for a false vacuum bubble in thin wall approximation
[Voloshin 1985] in 1+1 dimensions

S = Sarea + Svolume =

∫
(μ
√
ρ̇2 + ρ2 − 1

2
ερ2)

where μ is the action density per unit of bubble boundary, ε is the parameter, proportional to
energy difference between the two vacua.
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Semiclassical Approximation to Vacuum Decay: some References

Some History - 1
[Popov 1972] “Pair production in a variable and uniform field ...”. Imaginary time
formalism introduced.

[Stone 1976], “Semiclassical Methods For Unstable States”. Scalar field vacuum decay
treated semiclassically.

[Affleck, De Luccia 1979], “Induced Vacuum Decay”. Semiclassical treatment expanded to
induced processes.

[Agaev et. al. 1984] “Quasiclassical Description Of The Vacuum Instability In An External
Nonabelian Gauge Field”. 1-particle formalism applied to spontaneous Schwinger
processes.

[G. V. Dunne and C. Schubert, 2005] “Worldline instantons and pair production in
inhomogeneous fields”. One-particle method systematically developed for both leading
exponential and the pre-exponential factor.
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Semiclassical Approach to Monopole Decay

Some History - 2
Monopoles are perturbatively stable. However, in an unstable vacuum background they may
catalyze vacuum decay, which is interpreted as decay of BPS state itself. This instability may
be caused by deforming the potential or by an introduction of an external field.

[Steinhardt 1981] “Monopole And Vortex Dissociation And Decay Of The False Vacuum.”
Monopole in the context of scalar field deformed vacuum.

[Gorsky 2001] “Schwinger type processes via branes and their gravity duals.” BPS decay
in an external field suggested form semiclassical string paradigm.

[Dymarsky, Melnikov 2003] “Comments on BPS bound state decay.” Marginal stability
curve for “monopole + fermion” bound state studied quasiclassically.

[Monin 2005] “Monopole decay in the external electric field.” Leading exponential factor
calculated semiclassically.
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Semiclassical Path Integral

Semiclassical approximation:

Find closed-loop trajectories in Euclidean time

Calculate fluctuation determinants

+ + +...eD

M

M

M

M

M

M

eD

eD

0

T

0 0

T T

x3

x4

Full 1-loop Green function of a monopole is obtained by

summing over all the insertions of electron-dyon loop into

monopole’s Euclidean trajectory.

G(T, 0) = G(0)(T, 0) + G(1)(T, 0) + G(2)(T, 0) + · · ·
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Worldline Instantons

First correction to (scalar) Green function

G(1)(T, 0) =

∫
Dye−Mm

∫ √
ẏ2dτDxDze−S[x,z,A]

M

M

0

T

e D h e

M

M

0

T

D

Electron and dyon can go round the

loop multiply, winding over it with some

respective winding numbersm,n.

One-loop Euclidean configuration with

multiply winding trajectories (“world-

line instantons”). Dashed bold arcs

correspond to extra winding paths, ar-

rows indicate winding direction.

Propagator correction becomes after resummation over winding number m,n

G
(1)
resummed(x, z) ∼

∑
m,n

Km,ne−S
(m,n)
cl
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Negative Mode

M

M

0

T

e D

Dilatation of the electron-dyon loop

Fluctuation determinants yield
us the first corrections to
semiclassical exponential de-
cay factors. The special fluc-
tuation, corresponding to the
overall dilatation of the loop,
possesses a negative eigenval-
ue. This negative eigenmode
is the source of the imaginary
part of the mass correction.
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Exponential and Preexponential
The first correction due to electron-dyon loop is

G(1)(T, 0) =

∫
Dye−Mm

∫ √
ẏ2dτDxDze−S[x,z,A],

S[x, z,A] – action for the particles in the external field Aμ, x and z electron and dyon coordinates,

S[x, z,A] = m

∫ √
ẋ2du+ ie

∫
Aext(x)ẋdu+Md

∫ √
ż2dv − ie

∫
Aext(z)żdv .

Semiclassically,

G(1)(T, 0) =

∫
d4yG(0)(x, y)G(0)(y + Δy, z)Ke−Scl ,

where Scl is the classical action of dyon and electron; K contains contributions from the

Jacobian and from non-zero modes.

On the other hand, δG(x, z) = −δm2
∫
d4yG(0)(x, y)G(0)(y + Δy, z), thus

δm2 = Ke−Scl
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Exponential factor

Notations: μ1, μ2,m masses of electron, dyon and monopole respectively.

The equations of motion are

m
d

du

ẋμ√
ẋ2

= −ieFμν(x)ẋν

We consider �E = (0, 0, E), hence Euclidean trajectories of the sub-barrier particles (electron

and dyon) are just the arcs of circle of angular size θ1, θ2

θ1 = cos−1 m2+μ2
1−μ2

2
2mμ1

θ2 = cos−1 m2−μ2
1+μ2

2
2mμ2

The leading semiclassical exponential term in Γ becomes

Γ ∼ e
−
(

m2
e

eE θ1+
M2

d
eE θ2−meMd

eE sin(θ1+θ2)
)

Unfortunately, the prefactor is not easily recovered within this method
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Second Quantized Calculation

Advantage of second-quantized approach – 1-loop preexponential obtained at the same price

Fermionic Green function of a dyon in the constant external field:

G(x, x′) =
1

16π2

∫
ds

eE

sinh(eEs)
gE

sin(gEs)
eim2s+i

gE(x−x′)2⊥
4 tan(gEs) +i eE

4 tanh(eEs) (x−x′)2‖×

×e−i 1
2 eE(x0+x′

0)(x3−x′
3)−i 1

2 gE(x1+x′
1)(x2−x′

2)+iσ03eE+iσ12gE×

×
{

m − gEγ⊥(x−x′)⊥
2 tan(gEs) − eEγ‖(x−x′)‖

2 tanh(eEs) +

+ γ0eE
2 (x3 − x′

3) − γ3eE
2 (x0 − x′

0) + γ1gE
2 (x2 − x′

2) − γ2gE
2 (x1 − x′

1)
}

‖ denotes directions 0, 3, ⊥ directions 1, 2, electric field is constant and directed along axis 3,
summation over respectively repeating ‖ and ⊥ is supposed.

Disadvantage – calculation requires knowledge of an exact

Green function, available for a limited class of fields.
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Loop Correction

A correction to the Green function due to the electron-dyon loop is

δG(t, 0) =

∫
GM (t, x)tr

[
G(x, y)

(Ext)
E G(y, x)

(Ext)
D

]
GM (x, 0)dxdy,

indices M,E,D denoting monopole, electron and dyon correspondingly. After calculating
the trace, the correction to monopole Green function becomes

δGm(T, 0) = 1

218π4 λ
2eg3E4

∫
dα1 dα2dα3 dα4 dz dw e−(B+S‖+S⊥)

α1 sinα1 sinα2 sinh( g
e
α2)α3 α4 sinh( g

e
α4) sinh( g

e
α3)

×

×
(
meMd cosh(

g

e
α2) cos(α1 − α2) +

(
eE

2

)2

(w − z)2‖
cosh( g

e
α2)

sinα1 sinα2
+
egE2

4
(w − z)2⊥

cos(α1 − α2)

sinh( g
e
α2)

)

where

B =
m2

e
eE
α1 +

M2
d

eE
α2 +

M2
m

eE
(α3 + α4)

S‖ = eE
4α4

z2‖ + eE
4s

(T − w)2‖ + eE
4

(w − z)2‖(cotα1 + cotα2)

S⊥ = gE
4
z2⊥ coth( g

e
α4) + gE

4
w2

⊥ coth( g
e
α3) + eE

4

(w−z)2⊥
α1

+ eE
4

(w − z)2⊥ coth( g
e
α2)−

−i gE
2

(w1z2 − w2z1).
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Loop Correction

Integrating out z and w and introducing Feynman variables
α3 = Ax, α4 = A(1 − x) one gets

δG(T ) ∼ λ2g2

e

∫
dα1 dα2 A dA

α1 sinα1 sinα2 sinh( g
eα2)

e
−
[

m2
e

eE α1+
M2

d
eE α2+

M2
m

eE A+
eE
4 T2

A+
sin α1 sin α
sin(α1+α2

× 1[( e

α1
+ g cot

gα2

e

)
sinh

gA

e
+ g cosh

gA

e

][
A(cot α1 + cot α2) + 1

]×
×
{

meMd cosh(
g

e
α2) cos(α1 − α2) + eE

cosh( g
eα2)A

sinα1 sinα2[A(cotα1 + cotα2) +

+
(eET

2

)2 cosh( g
eα2)

sinα1 sinα2[A(cot α1 + cot α2) + 1]2
+

+ egE
cos(α1 − α2) sinh( g

eA)

α1 sinh( g
eα2)
[(

e
α1

+ g cot gα2
e

)
sinh gA

e + g cosh gA
e

)]
}

.

Further we shall have to evaluate this via saddle-point method.
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Saddle-Point Integral 1
The function to be minimized νf(A) = − M2

m
eE

[
A+

(eE)2

4M2
m
T 2 1

A+const

]
satisfies the

condition of saddle-point method applicability. Thus

A0 = eET
2Mm

− sin α1 sin α2
sin(α1+α2)

, and the second derivative is ∂2f
∂A2 =

4M3
m

(eE)2T
.

Euclidean propagator of a scalar particle in an external field is

Gm(T, 0) = 1
16π3/2

gE√
MmT

e−MmT

sinh gET
2Mm

, and the leading-order contribution to its variation

δGm(T, 0) = − 1

8
√

2π3/2
δMm gE

√
T

Mm

e−MmT

sinh gET
2Mm

.

Comparing the two expressions for δG(T, 0) one gets

Im δMm = − 1
27
√

2π3/2

λ2g

M

∫
dα1 dα2e

−
(

m2
e

eE α1+
M2

d
eE α2−M2

m
eE

sin α1 sin α2
sin(α1+α2)

)

α1 sinh( g
eα2) sin(α1 + α2)

(
e

α1
+ g cot( g

eα2) + g

×
[
meMd cosh

(gα2

e

)
cos(α1 − α2) + M2

m cosh
(gα2

e

) sinα1 sinα2

sin2(α1 + α2)

]
.
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Saddle-Point Integral 2
Custom integration via methods of the theory of complex variable

functions fails, due to an essential non-analyticity of the integrand in
α1, α2, like e−1/x in the vicinity of x = 0. One employs 2-dimensional

saddle-point method for
∫

dα1dα2. Minimizing

f(α1 , α2) = m2
e

eE α1 + M2
d

eE α2 − M2
m

eE
sin α1 sin α2
sin(α1+α2)

one gets

⎛
⎝ θ

±(n)
1

θ
±(m)
2

⎞
⎠ = ±

⎛
⎝ cos−1 M2

m+m2
e−M2

d

2meMm

cos−1 M2
m−m2

e+M2
d

2MdMm

⎞
⎠+

⎛
⎝ 2πn

2πm

⎞
⎠ ≡

⎛
⎝ ±θ1 + 2πn

±θ2 ± 2πm

⎞
⎠

n, m ∈ Z, θ
±(n)
i > 0, the corresponding determinant being

det ij

(
∂2f

∂αi∂αj

)
= −4

sin2 θ1 sin2 θ2

sin4(θ1 + θ2)

(
M2

m

eE

)2

= −4
(memd)2

(eE)2
.

Geometrically, the integer parameters m,n denote
winding numbers of classical solutions.
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Saddle-Point Integral: Contour Deformatio

Integration over α1, α2 contained a complicated contour rotation in C2.
Below we show a simplified picture of how it should be done for one
complex variable s ∈ C

Here singularities do not lie on integration path; and saddle-points are passed in

the (imaginary) direction prescribed by steepest descent condition. The

deformation was performed in the domain of analyticity of the integrand, without

traversing the singularities.
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Sum Over Winding Numbers
Finally one obtains the mass correction as a sum over winding numbers m,n

Im δMm = −λ2

8π

eE

Mm

{ ∑
n=0, m=0

e−S+
n,m cos2( θ1−θ2

2 )
sin(θ1 + θ2)

(
e

θ1+2πn + g cot( g
e (θ2 + 2πm)) + g

× g

(θ1 + 2πn) tanh( g
e (θ2 + 2πm))

−

−
∑

n=1, m=1

e−S−
n,m cos2( θ1−θ2

2 )
sin(θ1 + θ2)

(
e

2πn−θ1
+ g cot( g

e (2πm − θ2)) + g
)×

× g

(2πn − θ1) tanh( g
e (2πm − θ2))

}
, where

S+
n,m = m2

e

eE (θ1 + 2πn) + M2
d

eE (θ2 + 2πm) − meMd

eE sin(θ1 + θ2),

S−
n,m = m2

e

eE (2πn − θ1) + M2
d

eE (2πm − θ2) + meMd

eE sin(θ1 + θ2).The leading term:

Im δMm = − λ2

4
√

2π

eE

Mm
e−S0

cos2( θ1−θ2
2

)

sin(θ1 + θ2)
(

e
θ1

+ g cot( g
e
θ2) + g

) g

θ1 tanh( g
e
θ2)

,with S0

S0 =
m2

e

eE
θ1 +

M2
d

eE
θ2 − meMd

eE
sin(θ1 + θ2).
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Why semiclassical?

The leading exponential term in δM in the previous slide was obtained via approximating the
Schwinger proper-time integrals by saddle-point approximation. What is the physical

meaning of it?

In fact, when we got

S0 =
m2

e

eE
θ1 +

M2
d

eE
θ2 − meMd

eE
sin(θ1 + θ2).

we have recovered the classical action

Sc = const1 · Length − const2 · Area

typical both for induced Schwinger processes in the first-quantized approach and for the 2D
vacuum decay phenomena.

Terms proportional to θ1, θ2 ∼ world-line length.
Terms proportional to sin(θ1 + θ2) ∼ area between world-lines.

In general, our result amounts to an explicit verification of a general statement on classical

action in ST and Green functions in FT

e
−Sstring theory |classical ∼ Σfield theory|semiclassical
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Thirring Model vs Sine-Gordon

For an induced Schwinger process in Thirring model there exists a calculation of the sub-leading fact
by Gorsky and Voloshin, based on vacuum decay in the dual theory (Sine-Gordon Model)

Γ =
4gμ

π3
e−S0 ,

here g Thirring coupling constant, g � 1; μ mass of Thirring fermions, S0 classical action.

K, K̄ are kink-antikink pair in sine-Gordon model. LHS figure depicts a vacuum bubble with “legs” corresponding to ini

φ particle, RHS – Schwinger decay of a meson π.
First bound state π of massive Thirring model is a pseudocsalar, because the fermionic
current jμ = ψ̄γμψ in Thirring model corresponds to a pseudovector quantity εμν∂νφ in

sine-Gordon model.
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2D calculation

The suggested treatment of monopoles in 4D corresponds to the decay of bound state into a
pair of a fermion and an antifermion of masses μ1, μ2 in 2D. It yields after resummation,

which is done exactly

Im δm = − λ2

4m
1(

1−e−
2πμ2

1
eE

)(
1−e−

2πμ2
2

eE

)
sin(θ1+θ2)

×

×
{

e−S
+
0

[
2 cos2

(
θ1−θ2

2

)
− eE

μ1μ2

1
sin(θ1+θ2)

]
−

− e−S
−
0

[
2 cos2

(
θ1−θ2

2

)
+ eE

μ1μ2

1
sin(θ1+θ2)

]}
, and

θ1 = cos−1 m2+μ2
1−μ2

2
2mμ1

θ2 = cos−1 m2−μ2
1+μ2

2
2mμ2

S+ = μ2
1

eE θ1 + μ2
2

eE θ2 − μ1μ2
eE sin(θ1 + θ2),

S− = μ2
1

eE (2π − θ1) + μ2
2

eE (2π − θ2) + μ1μ2
eE sin(θ1 + θ2)
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Vacuum Decay in SG=Schwinger in Thirrin

In Thirring model, the above calculations for decay of bound state with
mass m into two fermions with equal masses μ lead us to

Im δm = − λ2

4m
e−S0

sin 2θ

(
2 − eE

μ2
1

sin 2θ

)
, where θ = cos−1 m

2μ

(resummation factor 1

(1−e
− 2πμ2

eE )2
omitted here). Let the external meson be the lightest

bound state, then m = π2μ
2g

� μ. Comparison of Schwinger and vacuum decay yields

λ = μ

√
π

g

This suggests a perturbative interpretation of the non-perturbative result: 1/
√

g being

small, λ effectively has a meaning of coupling constant in induced Schwinger process

for the lightest Thirring meson.
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Finite Temperature: General Features

Several simple features are characteristic for theories at finite

temperatures

Green functions become periodic in Euclidean time, continuous

momenta p0 substituted for discrete Matsubara frequencies 2πn
β

An additional gauge-invariant quantity eie
∮
Aμdxμ

(holonomy)

characterizes the observables.

The class of gauge transformations admitted by the theory is

restricted to periodic functions in Euclidean time. However, no

periodicity condition is imposed upon Aμ(x)

Thus one can treat finite-temperature filed theory as a theory on a

R3 × S1, with the restrictions above imposed.
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Finite-Temperature Green Functions

We are going to consider again Thirring meson in 2 dimensions. Decay rate into a

fermion-antifermion pair in an external field is calculated. This process has all

characteristic properties of what happens to monopoles in 4D.

The Euclidean Green function for a charged particle in an external field �E = (0, E) is

expressed in terms of the following sum:

G(x, y) =
∞∑

p=−∞

∫
eEds

sinh(eEs)
×

× e
−i(x0−y0−pβ)2eE coth(eEs)

4
− i(x1−y1)2eE coth(eEs)

4 ×
×e

i
2
eE(x3−y3)(x0+y0+pβ)

The imaginary part of meson mass is calculated in the same formalism as above.
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Thermal Corrections to Schwinger Processe

We give an exact expression for the decay rate Γ It can be expressed in terms of a series in
Matsubara frequencies:

Γ =
λ2β−1ε−3/2

4m
√

π

∫
dα1dα2√

sinh(α1 + α2) cosh(α1 − α2)
×

×
∑
r,s∈Z

δk+r+se
4π2i
eE

(r tanh(α1)−s tanh(α2))2 sinh(2α1) sinh(2α2)
4 sinh(α1+α2) cosh(α1−α2) ×

×e
i

[
r2 tanh(α1)+s2 tanh(α2)+

μ2

eE
(α1+α2)−m2

eE
1

coth(α1)+coth(α2)

]

where after doing summation one makes an analytic extension to continuous values of k
and imposes k = mβ

2π
. The α1, α2 integrals are to be estimated by the saddle-point method.
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“Duality”

Doing calculations with Matsubara sums, one makes extensive use of the well-known
Poisson formula

∞∑
n=−∞

f(n) =
∞∑

n=−∞
f̃(2πn)

where f̃(k) =
∫∞
−∞ f(t)e−iktdt.

Therefore, either for β → 0 or for β → ∞ the leading term is the one with zero Matsubara

frequency, and the sub-leading term (the first Matsubara frequency) is exponentially

suppressed (like ∼ e
− 1

β2eE or ∼ e−β2eE respectively). More accurately, this “duality”

manifests itself via the possibility to use the two equivalent series:

Γ ∼ 1
β

∑
s

∫
dα1dα2e

i
[

μ2

eE (α1+α2)−m2
eE

1
coth(α1)+coth(α2)+

4π2A
eEβ2 (s−s0)

2
]

=

=
∑

s

∫
dα1dα2e

i
[

μ2

eE (α1+α2)−m2
eE

1
cot h(α1)+coth(α2)− eEβ2s2

4A −2πss0

]

dependent on the particular asymptotics. Here A =
sinh(α1+α2)
cosh(α1−α2)

,

s0 = −k 1
tanh(α2)(coth(α1)+coth(α2))

, after the analytic continuation k = mβ
2π

.
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Saddle Point vs. Matsubara Sum

The integrand series in the Schwinger proper-time integrals has two equivalent
representations

(1) ∼ e
i

[
μ2
eE

(α1+α2)−m2
eE

1
coth(α1)+coth(α2)+ 4π2A

eEβ2 (s−s0)2
]

(2) ∼ e
i

[
μ2
eE

(α1+α2)−m2
eE

1
cot h(α1)+coth(α2)−

eEβ2s2
4A

−2πss0

]

(Summation over s omitted above.)

“Duality” property summarized below:

β2eE → 0 β2eE → ∞
L.O. μ2

eE
(α1 + α2) − m2

eE
1

coth(α1)+coth(α2)
+ 4π2A

eEβ2 (s0)2
μ2

eE
(α1 + α2) − m2

eE
1

coth(α1)+co

N.L.O. 4π2A
eEβ2

eEβ2

4A
− 2πs0
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Low-Temperature Limit

In the low-temperature limit for equal-mass fermions the zero-temperature result is
reconstructed in the leading order,

ΓL.O. =
λ2eE

8πm

1
sin(2α)

e
−2 μ2

eE
α+ m2

eE
1

2 cot(α)

where evaluating the saddle-point integrals is done at the same values α = iα as before

cosα =
m

2μ
.
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High-Temperature Limit

Leading-order term prefactor is proportional to the temperature in the
asypmtotic regime β2ε → 0, μ � m

ΓL.O. ≈
1
β

λ2

√
eE

1√
sin(2α)

e−
μ2

eE 2α+ m2
eE

1
2 cot(α)

Saddle-point value is different for this limit, namely

α ≈ M

m

However, high-temperature regime requires more physical understanding:
one should take care of distinguishing the competing purely

quantum-mechanical tunnelling transitions, suppressed as e−
SE

� , and
thermal (over-barrier) processes, suppressed as e−βE . Therefore, we do

not give next-to-leading order corrections here.
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Main Results

Monopole width up to the subleading semiclassical factor:

Im δMm ≈ − λ2

4
√

2π
eE

Mm

e−S0 cos2( θ1−θ22 )
sin(θ1 + θ2)

(
e
θ1

+ g cot(geθ2) + g
) g

θ1 tanh(geθ2

Effective “fermion–meson” vertex for Schwinger process in

Thirring model:

λ = μ

√
π

g
.

Finite-temperature corrections for meson decay width in an

external field are calculated.
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